設(shè)△ABC的三內(nèi)角A、B、C所對的邊分別為a、b、c,且a=2,c=4,cosB=
1
4
,則sinC=
 
考點:正弦定理
專題:解三角形
分析:利用余弦定理求得b,利用cosB求得sinB,最后通過正弦定理可求得sinC的值.
解答: 解:由余弦定理知cosB=
a2+c2-b2
2ac
=
4+16-b2
16
=
1
4
,
求得b=4,
sinB=
1-
1
16
=
15
4

∴由正弦定理知
b
sinB
=
c
sinC
,
∴sinC=
csinB
b
=
15
4

故答案為:
15
4
點評:本題主要考查了正弦定理和余弦定理的應(yīng)用.對于解三角形問題,常用正弦定理和余弦定理綜合解決.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)a,b,c分別是函數(shù)f(x)=2x-log
1
2
x,g(x)=(
1
2
)x-log2
x,h(x)=(
1
2
)x-log
1
2
x的零點,則a,b,c的大小關(guān)系是( 。
A、a<c<b
B、a<b<c
C、b<a<c
D、c<b<a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
a•ex,x≤0
-lnx,x>0
,(a>0,其中e為自然對數(shù)的底數(shù)),若關(guān)于x的方程f(f(x))=0,有且只有一個實數(shù)解,則實數(shù)a的取值范圍為(  )
A、(1,+∞)
B、(1,2)
C、(0,1)
D、(0,1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若無窮等比數(shù)列{an}滿足:
lim
n→∞
(a1+a2+…+an)=4
,則首項a1的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在數(shù)列{an}中,a1=3,點(an,an+1)在直線y=x+2上,若數(shù)列{bn}滿足bn=an•3n,記Tn是數(shù)列{bn}的前n項的和,那么Tn=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)P1、P2分別是P關(guān)于x軸、y軸的對稱點,直線OP的斜率為
3
4
,O為坐標原點,則直線OP1、OP2的斜率分別為
 
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=-cosx在區(qū)間[a,b]上是減函數(shù),且f(a)=
1
3
,f(b)=-
1
3
,則sin(
π
2
+
a+b
2
)的值為(  )
A、0
B、-
3
2
C、
1
6
D、
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足a1=1,an+1=
an+3
2an-4
,求通項an

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)的定義域為[-1,5],f(3x-5)的定義域為( 。
A、[
4
3
,
10
3
]
B、[-8,10]
C、[
4
3
,+∞]
D、[8,10]

查看答案和解析>>

同步練習冊答案