A. | 2$\sqrt{5}$ | B. | 2$\sqrt{6}$ | C. | 2$\sqrt{3}$ | D. | $\frac{11}{3}$ |
分析 方法一,根據(jù)直角三角形的有關(guān)知識(shí)即可求出,
方法二,根據(jù)正弦定理即可求出.
解答 解:法一:過點(diǎn)C作CD⊥AB,
∵B=60°,C=75°,
∴A=45°,
∴AD=CD,
∵BC=a=4,B=60°,
∴CD=asin60°=2$\sqrt{3}$,
∴b=AC=$\frac{2\sqrt{3}}{sin45°}$=2$\sqrt{6}$,
法二:∵B=60°,C=75°,
∴A=45°,
由正弦定理可得$\frac{a}{sinA}$=$\frac{sinB}$,
∴b=$\frac{asinB}{sinA}$=$\frac{4×\frac{\sqrt{3}}{2}}{\frac{\sqrt{2}}{2}}$=2$\sqrt{6}$,
故選:B
點(diǎn)評(píng) 本題考查了解三角形的有關(guān)問題,關(guān)鍵掌握正弦定理,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 3 | C. | $\frac{1}{2}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,2) | B. | (2,3) | C. | (3,4) | D. | (4,5) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-$\sqrt{3}$]∪[$\sqrt{3}$,+∞) | B. | (-∞,-$\sqrt{3}$)∪($\sqrt{3}$,+∞) | C. | [-$\sqrt{3}$,$\sqrt{3}$] | D. | (-$\sqrt{3}$,$\sqrt{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
x | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 |
f(x) | a | -1 | 1.58 | b | -5.68 | -39.42 | -109.19 | -227 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(sinα)>f(cosβ) | B. | f(sinα)<f(cosβ) | C. | f(cosα)<f(cosβ) | D. | f(sinα)>f(sinβ) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com