【題目】已知函數(shù)

1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

2)談?wù)摵瘮?shù)的零點(diǎn)個數(shù)

【答案】(1) 的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是 (2)見解析

【解析】

1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)不等式,求出函數(shù)的單調(diào)區(qū)間;

2)由(1)知當(dāng)時,,分,三種情況討論,由函數(shù)的定義域為顯然沒有零點(diǎn),當(dāng)轉(zhuǎn)化為函數(shù)的交點(diǎn)問題.

解:(1)∵,

,

時,,故單調(diào)遞減,

時,,故單調(diào)遞增,

所以,時,的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是

2)由(1)知,

當(dāng)時,處取最小值,

當(dāng)時,,在其定義域內(nèi)無零點(diǎn)

當(dāng)時,在其定義域內(nèi)恰有一個零點(diǎn)

當(dāng)時,最小值,因為,且單調(diào)遞減,故函數(shù)上有一個零點(diǎn),

因為,,又上單調(diào)遞增,故函數(shù)上有一個零點(diǎn),故在其定義域內(nèi)有兩個零點(diǎn);

當(dāng)時,在定義域內(nèi)無零點(diǎn);

當(dāng)時,令,可得,分別畫出,易得它們的圖象有唯一交點(diǎn),即此時在其定義域內(nèi)恰有一個零點(diǎn)

綜上,時,在其定義域內(nèi)無零點(diǎn);時,在其定義域內(nèi)恰有一個零點(diǎn);時,在其定義域內(nèi)有兩個零點(diǎn);

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《西游記》《三國演義》《水滸傳》和《紅樓夢》是中國古典文學(xué)瑰寶,并稱為中國古典小說四大名著.某中學(xué)為了解本校學(xué)生閱讀四大名著的情況,隨機(jī)調(diào)查了100名學(xué)生,其中閱讀過《西游記》的學(xué)生有70位,只閱讀過《紅樓夢》的學(xué)生有20位,則既沒閱讀過《西游記》也沒閱讀過《紅樓夢》的學(xué)生人數(shù)與該校學(xué)生總數(shù)比值的估計值為(

A.0.1B.0.2C.0.3D.0.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著新課程改革和高考綜合改革的實(shí)施,高中教學(xué)以發(fā)展學(xué)生學(xué)科核心素養(yǎng)為導(dǎo)向,學(xué)習(xí)評價更關(guān)注學(xué)科核心素養(yǎng)的形成和發(fā)展.為此,我市于2018年舉行第一屆高中文科素養(yǎng)競賽,競賽結(jié)束后,為了評估我市高中學(xué)生的文科素養(yǎng),從所有參賽學(xué)生中隨機(jī)抽取1000名學(xué)生的成績(單位:分)作為樣本進(jìn)行估計,將抽取的成績整理后分成五組,從左到右依次記為,,,,并繪制成如圖所示的頻率分布直方圖.

(1)請補(bǔ)全頻率分布直方圖并估計這1000名學(xué)生成績的平均數(shù)(同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

(2)采用分層抽樣的方法從這1000名學(xué)生的成績中抽取容量為40的樣本,再從該樣本成績不低于80分的學(xué)生中隨機(jī)抽取2名進(jìn)行問卷調(diào)查,求至少有一名學(xué)生成績不低于90分的概率;

(3)我市決定對本次競賽成績排在前180名的學(xué)生給予表彰,授予“文科素養(yǎng)優(yōu)秀標(biāo)兵”稱號.一名學(xué)生本次競賽成績?yōu)?9分,請你判斷該學(xué)生能否被授予“文科素養(yǎng)優(yōu)秀標(biāo)兵”稱號.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在邊長為的等邊三角形中,點(diǎn)分別是邊上的點(diǎn),滿足,將沿直線折到的位置. 在翻折過程中,下列結(jié)論成立的是(

A.在邊上存在點(diǎn),使得在翻折過程中,滿足平面

B.存在,使得在翻折過程中的某個位置,滿足平面平面

C.,當(dāng)二面角為直二面角時,

D.在翻折過程中,四棱錐體積的最大值記為,的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為研究學(xué)生的身體素質(zhì)與體育鍛煉時間的關(guān)系,對該校200名高三學(xué)生平均每天體育鍛煉時間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時間單位:分鐘)

平均每天鍛煉的時間/分鐘

總?cè)藬?shù)

20

36

44

50

40

10

將學(xué)生日均體育鍛煉時間在的學(xué)生評價為鍛煉達(dá)標(biāo)

1)請根據(jù)上述表格中的統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表;

鍛煉不達(dá)標(biāo)

鍛煉達(dá)標(biāo)

合計

20

110

合計

并通過計算判斷,是否能在犯錯誤的概率不超過0.025的前提下認(rèn)為鍛煉達(dá)標(biāo)與性別有關(guān)?

2)在鍛煉達(dá)標(biāo)的學(xué)生中,按男女用分層抽樣方法抽出5人,進(jìn)行體育鍛煉體會交流,再從這5人中選出2人作重點(diǎn)發(fā)言,求作重點(diǎn)發(fā)言的2人中,至少1人是女生的概率.

參考公式:,其中

臨界值表

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,點(diǎn)F為拋物線的焦點(diǎn),焦點(diǎn)F到直線3x-4y+3=0的距離為d1,焦點(diǎn)F到拋物線C的準(zhǔn)線的距離為d2,且

(1)拋物線C的標(biāo)準(zhǔn)方程;

(2)若在x軸上存在點(diǎn)M,過點(diǎn)M的直線l分別與拋物線C相交于P、Q兩點(diǎn),且為定值,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為實(shí)現(xiàn)有效利用扶貧資金,增加貧困村民的收入,扶貧工作組結(jié)合某貧困村水質(zhì)優(yōu)良的特點(diǎn),決定利用扶貧資金從外地購買甲、乙、丙三種魚苗在魚塘中進(jìn)行養(yǎng)殖試驗,試驗后選擇其中一種進(jìn)行大面積養(yǎng)殖,已知魚苗甲的自然成活率為0.8.魚苗乙,丙的自然成活率均為0.9,且甲、乙、丙三種魚苗是否成活相互獨(dú)立.

1)試驗時從甲、乙,丙三種魚苗中各取一尾,記自然成活的尾數(shù)為,求的分布列和數(shù)學(xué)期望;

2)試驗后發(fā)現(xiàn)乙種魚苗較好,扶貧工作組決定購買尾乙種魚苗進(jìn)行大面積養(yǎng)殖,為提高魚苗的成活率,工作組采取增氧措施,該措施實(shí)施對能夠自然成活的魚苗不產(chǎn)生影響.使不能自然成活的魚苗的成活率提高了50%.若每尾乙種魚苗最終成活后可獲利10元,不成活則虧損2元,且扶貧工作組的扶貧目標(biāo)是獲利不低于37.6萬元,問需至少購買多少尾乙種魚苗?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若,過分別作曲線的切線,且關(guān)于軸對稱,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某醫(yī)科大學(xué)實(shí)習(xí)小組為研究實(shí)習(xí)地晝夜溫差與患感冒人數(shù)之間的關(guān)系,分別到當(dāng)?shù)貧庀蟛块T和某醫(yī)院抄錄了1月份至3月份每月5日、20日的晝夜溫差情況與因患感冒而就診的人數(shù),得到如表資料:

日期

15

120

25

220

35

320

晝夜溫差

10

11

13

12

8

6

就診人數(shù)(人)

22

25

29

26

16

12

該小組確定的研究方案是:先從這六組數(shù)據(jù)中隨機(jī)選取4組數(shù)據(jù)求線性回歸方程,再用剩余的2組數(shù)據(jù)進(jìn)行檢驗.

1)求剩余的2組數(shù)據(jù)中至少有一組是20日的概率;

2)若選取的是120日,25日,220日,35日四組數(shù)據(jù).

①請根據(jù)這四組數(shù)據(jù),求出關(guān)于的線性回歸方程,用分?jǐn)?shù)表示);

②若由線性回歸方程得到的估計數(shù)據(jù)與剩余的檢驗數(shù)據(jù)的誤差均不超過1人,則認(rèn)為得到的線性回歸方程是理想的,試問①中所得線性回歸方程是否理想?

附參考公式:.

查看答案和解析>>

同步練習(xí)冊答案