在對某漁業(yè)產(chǎn)品的質(zhì)量調(diào)研中,從甲、乙兩地出產(chǎn)的該產(chǎn)品中各隨機抽取10件,測量該產(chǎn)品中某種元素的含量(單位:毫克).下表是測量數(shù)據(jù)的莖葉圖:

規(guī)定:當產(chǎn)品中的此種元素含量毫克時為優(yōu)質(zhì)品.
(1)試用上述樣本數(shù)據(jù)估計甲、乙兩地該產(chǎn)品的優(yōu)質(zhì)品率(優(yōu)質(zhì)品件數(shù)/總件數(shù));
(2)從乙地抽出的上述10件產(chǎn)品中,隨機抽取3件,求抽到的3件產(chǎn)品中優(yōu)質(zhì)品數(shù)的分布列及數(shù)學期望.

(1) , (2)

解析試題分析:(1)因為通過閱讀莖葉圖可得到甲、乙兩組測量值的數(shù)據(jù),又因為當產(chǎn)品中的此種元素含量毫克時為優(yōu)質(zhì)品,通過數(shù)出兩組優(yōu)質(zhì)品的數(shù)據(jù)的個數(shù),再用優(yōu)質(zhì)品的的件數(shù)除以總共的樣本數(shù)即可得到甲、乙的優(yōu)質(zhì)品率.
(2)因為從乙地抽出的上述10件產(chǎn)品中,隨機抽取3件,由于乙產(chǎn)品中優(yōu)質(zhì)品有8件,所以優(yōu)質(zhì)品的件數(shù)共有三種情況,通過計算每種情況的概率以及數(shù)學期望的計算公式即可得到結(jié)論.
試題解析:(I)甲廠抽取的樣本中優(yōu)等品有7件,優(yōu)等品率為
乙廠抽取的樣本中優(yōu)等品有8件,優(yōu)等品率為
(II)的取值為1,2,3.


所以的分布列為


      1
     2
     3

    
   
    
故的數(shù)學期望為 
考點:1.莖葉圖的知識.2.列舉對比的數(shù)學思想.3.數(shù)學期望的計算.4.概率知識.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

設(shè)連續(xù)擲兩次骰子得到的點數(shù)分別為m、n,令平面向量a=(m,n),b=(1,-3).
(1) 求使得事件“ab”發(fā)生的概率;
(2) 求使得事件“|a|≤|b|”發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

甲、乙等五名大運會志愿者被隨機分到A、B、C、D四個不同的崗位服務(wù),每個崗位至少有一名志愿者.
(1)求甲、乙兩人同時參加A崗位服務(wù)的概率;
(2)求甲、乙兩人不在同一崗位服務(wù)的概率;
(3)設(shè)隨機變量ξ為這五名志愿者中參加A崗位服務(wù)的人數(shù),求ξ的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

為了倡導健康、低碳、綠色的生活理念,某市建立了公共自行車服務(wù)系統(tǒng)鼓勵市民租用公共自行車出行,公共自行車按每車每次的租用時間進行收費,具體收費標準如下:
①租用時間不超過1小時,免費;
②租用時間為1小時以上且不超過2小時,收費1元;
③租用時間為2小時以上且不超過3小時,收費2元;
④租用時間超過3小時的時段,按每小時2元收費(不足1小時的部分按1小時計算)
已知甲、乙兩人獨立出行,各租用公共自行車一次,兩人租車時間都不會超過3小時,設(shè)甲、乙租用時間不超過1小時的概率分別是0.4和0.5;租用時間為1小時以上且不超過2小時的概率分別是0.5和0.3.
(1)求甲、乙兩人所付租車費相同的概率;
(2)設(shè)甲、乙兩人所付租車費之和為隨機變量,求的分布列和數(shù)學期望E.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在某城市中,M,N兩地之間有整齊的方格形道路網(wǎng),A1,A2,A3,A4是道路網(wǎng)中位于一條對角線上的4個交匯處,今在道路網(wǎng)M,N處的甲、乙兩人分別要到N,M處,他們分別隨機地選擇一條沿街的最短路徑,同時以每10分鐘一格的速度分別向N,M處行走,直到到達N,M為止.

(1)求甲經(jīng)過A2的概率.
(2)求甲、乙兩人相遇經(jīng)A2點的概率.
(3)求甲、乙兩人相遇的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

甲、乙、丙三人參加某次招聘會,假設(shè)甲能被聘用的概率是,甲、丙兩人同時不能被聘用的概率是,乙、丙兩人同時能被聘用的概率為,且三人各自能否被聘用相互獨立.
(1)求乙、丙兩人各自被聘用的概率;
(2)設(shè)為甲、乙、丙三人中能被聘用的人數(shù)與不能被聘用的人數(shù)之差的絕對值,求的分布列與均值(數(shù)學期望).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知二次函數(shù)R,若是從區(qū)間中隨機抽取的一個數(shù),是從區(qū)間中隨機抽取的一個數(shù),求方程沒有實數(shù)根的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

甲、乙兩人進行投籃比賽,兩人各投3球,誰投進的球數(shù)多誰獲勝,已知每次投籃甲投進的概率為,乙投進的概率為,求:
(1)甲投進2球且乙投進1球的概率;
(2)在甲第一次投籃未投進的條件下,甲最終獲勝的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某商場為吸引顧客消費推出一項促銷活動,促銷規(guī)則如下:到該商場購物消費滿100元就可轉(zhuǎn)動如圖所示的轉(zhuǎn)盤一次,進行抽獎(轉(zhuǎn)盤為十二等分的圓盤),滿200元轉(zhuǎn)兩次,以此類推;在轉(zhuǎn)動過程中,假定指針停在轉(zhuǎn)盤的任一位置都是等可能的;若轉(zhuǎn)盤的指針落在A區(qū)域,則顧客中一等獎,獲得10元獎金;若轉(zhuǎn)盤落在B區(qū)域或C區(qū)域,則顧客中二等獎,獲得5元獎金;若轉(zhuǎn)盤指針落在其他區(qū)域,則不中獎(若指針停到兩區(qū)間的實線處,則重新轉(zhuǎn)動).若顧客在一次消費中多次中獎,則對其獎勵進行累加.已知顧客甲到該商場購物消費了268元,并按照規(guī)則參與了促銷活動.

(1)求顧客甲中一等獎的概率;
(2)記X為顧客甲所得的獎金數(shù),求X的分布列及其數(shù)學期望.

查看答案和解析>>

同步練習冊答案