某公司推出了一種高效環(huán)保型洗滌用品,年初上市后,公司經(jīng)歷了從虧損到贏利的過程.若該公司年初以來累積利潤s(萬元)與銷售時間t(月)之間的關(guān)系(即前t個月的利潤總和與t之間的關(guān)系)式為s=
1
2
t2-2t,若累積利潤s超過30萬元,則銷售時間t(月)的取值范圍為
 
考點(diǎn):函數(shù)模型的選擇與應(yīng)用
專題:應(yīng)用題,函數(shù)的性質(zhì)及應(yīng)用
分析:由題意,
1
2
t2-2t>30,解不等式,即可求出銷售時間t(月)的取值范圍.
解答: 解:由題意,
1
2
t2-2t>30,即t2-4t-60>0,
∴(t-10)(t+4)>0,
∵t>0,
∴t>10,
∴銷售時間t(月)的取值范圍為(10,+∞).
故答案為:(10,+∞).
點(diǎn)評:本題考查函數(shù)模型的運(yùn)用,考查解不等式,考查學(xué)生的計算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓x2+y2+x-6y+m=0與直線x+2y-3=0相交于P、Q兩點(diǎn),若A(-2,0)且AP⊥AQ,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解關(guān)于x的不等式(lgx)2-lgx-2>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從某學(xué)校高三年級共800名男生中隨機(jī)抽取50名作為樣本測量身高.據(jù)測量,被測學(xué)生身高全部介于155cm和195cm之間,將測量結(jié)果按如下方式分成八組:第一組[155,160)第二組[160,165);…第八組[190,195].下圖是按上述分組方法得到的頻率分布直方圖的一部分.已知第一組與第八組人數(shù)相同,第六組、第七組、第八組人數(shù)依次構(gòu)成等差數(shù)列.
(Ⅰ)估計這所學(xué)校高三年級全體男生身高在180cm以上(含180cm)的人數(shù);
(Ⅱ)在上述樣本中從身高屬于第六組和第八組的所有男生中隨機(jī)抽取兩名男生,記他們的身高分別為x,y,求滿足“|x-y|≤5”的事件的概率;
(Ⅲ)在上述樣本中從最后三組中任取3名學(xué)生參加學(xué)校籃球隊,用ξ表示從第八組中取到的學(xué)生人數(shù),求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

C
 
5
7
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在梯形ABCD中,AD∥BC,AB=5,AC=9,∠BCA=30°,∠ADB=45°.則BD的長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不論m取任何實數(shù),直線l:(m-1)x-y+2m+1=0恒過一定點(diǎn),則該定點(diǎn)的坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α是第二象限角,且cosα=-
1
3
,則tan2α的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l:2xsinα+2ycosα+1=0,圓C:x2+y2+2xsinα+2ycosα=0,l與C的位置關(guān)系是(  )
A、相交B、相切
C、相離D、不能確定

查看答案和解析>>

同步練習(xí)冊答案