【題目】紙是生活中最常用的紙規(guī)格.系列的紙張規(guī)格特色在于:①、、…、,所有尺寸的紙張長寬比都相同.②在系列紙中,前一個(gè)序號(hào)的紙張以兩條長邊中點(diǎn)連線為折線對(duì)折裁剪分開后,可以得到兩張后面序號(hào)大小的紙,比如1張紙對(duì)裁后可以的到2張紙,1張紙對(duì)裁可以得到2張紙,以此類推.這是因?yàn)?/span>系列的紙張長寬比為這一特殊比例,所以具備這種特性.已知紙規(guī)格為84.1厘米×118.9厘米().那么紙的長度為( )

A.14.8厘米B.21厘米C.25.1厘米D.29.7厘米

【答案】D

【解析】

設(shè)紙的長為,寬為,根據(jù)題意,整理、、、、紙的長寬與的關(guān)系,最后將值代入即可

設(shè)紙的長為,寬為,則由題意, 1張紙以長邊為中點(diǎn)對(duì)裁后可以的到2張紙,此時(shí)紙相鄰兩邊長度分別為,,即前一序號(hào)紙張的寬變?yōu)楝F(xiàn)紙張的長,按照該事實(shí),可以得到紙的長為,寬為紙的長為,寬為;紙的長為,寬為

由題,,

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)宣傳部組織了這樣一個(gè)游戲項(xiàng)目:甲箱子里面有3個(gè)紅球,2個(gè)白球,乙箱子里面有1個(gè)紅球,2個(gè)白球,這些球除了顏色以外,完全相同。每次游戲需要從這兩個(gè)箱子里面各隨機(jī)摸出兩個(gè)球.

(1)設(shè)在一次游戲中,摸出紅球的個(gè)數(shù)為,求分布列.

(2)若在一次游戲中,摸出的紅球不少于2個(gè),則獲獎(jiǎng).

①求一次游戲中,獲獎(jiǎng)的概率;

②若每次游戲結(jié)束后,將球放回原來的箱子,設(shè)4次游戲中獲獎(jiǎng)次數(shù)為,求的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn),軸為極軸的極坐標(biāo)系中,圓的方程

1)寫出直線的普通方程和圓的直角坐標(biāo)方程;

2)若點(diǎn)的直角坐標(biāo)為,圓與直線交于兩點(diǎn),求弦中點(diǎn)的直角坐標(biāo)和的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A(0,-2),橢圓E (a>b>0)的離心率為,F是橢圓E的右焦點(diǎn),直線AF的斜率為,O為坐標(biāo)原點(diǎn).

(1)E的方程;

(2)設(shè)過點(diǎn)A的動(dòng)直線lE相交于P,Q兩點(diǎn).當(dāng)OPQ的面積最大時(shí),求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】噪聲污染已經(jīng)成為影響人們身體健康和生活質(zhì)量的嚴(yán)重問題.實(shí)踐證明, 聲音強(qiáng)度(分貝)由公式 (為非零常數(shù))給出,其中為聲音能量.

(1)當(dāng)聲音強(qiáng)度滿足時(shí),求對(duì)應(yīng)的聲音能量滿足的等量關(guān)系式;

(2)當(dāng)人們低聲說話,聲音能量為時(shí),聲音強(qiáng)度為30分貝;當(dāng)人們正常說話,聲音能量為時(shí),聲音強(qiáng)度為40分貝.當(dāng)聲音能量大于60分貝時(shí)屬于噪音,一般人在100分貝~120分貝的空間內(nèi),一分鐘就會(huì)暫時(shí)性失聰.問聲音能量在什么范圍時(shí),人會(huì)暫時(shí)性失聰.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】古希臘畢達(dá)哥拉斯學(xué)派研究了“多邊形數(shù)”,人們把多邊形數(shù)推廣到空間,研究了“四面體數(shù)”,下圖是第一至第四個(gè)四面體數(shù),(已知

觀察上圖,由此得出第5個(gè)四面體數(shù)為______(用數(shù)字作答);第個(gè)四面體數(shù)為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若對(duì)于曲線f(x)=-exx(e為自然對(duì)數(shù)的底數(shù))的任意切線l1,總存在曲線g(x)=ax+2cosx的切線l2,使得l1l2,則實(shí)數(shù)a的取值范圍為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若關(guān)于的不等式的解集為,求實(shí)數(shù)的值;

2)設(shè),若不等式對(duì)都成立,求實(shí)數(shù)的取值范圍;

3)若時(shí),求函數(shù)的零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某超市計(jì)劃按月訂購一種飲料,每天進(jìn)貨量相同,進(jìn)貨成本每瓶3元,售價(jià)每瓶5元,每天未售出的飲料最后打4折當(dāng)天全部處理完根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫單位:有關(guān)如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間,需求量為300瓶;如果最高氣溫低于20,需求量為100瓶為了確定六月份的訂購計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得到下面的頻數(shù)分布表:

最高氣溫

天數(shù)

2

16

36

25

7

4

以最高氣溫位于各區(qū)間的頻率代替最高氣溫位于該區(qū)間的概率.

求六月份這種飲料一天的需求量單位:瓶的分布列,并求出期望EX;

設(shè)六月份一天銷售這種飲料的利潤為單位:元,且六月份這種飲料一天的進(jìn)貨量為單位:瓶,請(qǐng)判斷Y的數(shù)學(xué)期望是否在時(shí)取得最大值?

查看答案和解析>>

同步練習(xí)冊(cè)答案