10.已知數(shù)列{an}為等比數(shù)列,Sn為其前n項(xiàng)和,且${S_n}=2017×{2016^n}-2018t$,則t=(  )
A.$\frac{2015}{2016}$B.$\frac{2016}{2017}$C.$\frac{2017}{2018}$D.$\frac{2018}{2019}$

分析 先分別求出a1,a2,a3,由等比數(shù)列{an}中,${{a}_{2}}^{2}={a}_{1}{a}_{3}$,能求出t的值.

解答 解:∵數(shù)列{an}為等比數(shù)列,Sn為其前n項(xiàng)和,且${S_n}=2017×{2016^n}-2018t$,
∴a1=S1=2017×2016-2018t,
a2=S2-S1=(2017×20162-2018t)-(2017×2016-2018t)=2017×2016×2015,
a3=S3-S2=(2017×20162-2018t)-(2017×20162-2018t)=2017×20162×2015,
∵等比數(shù)列{an}中,${{a}_{2}}^{2}={a}_{1}{a}_{3}$,
∴(2017×2016×2015)2=(2017×2016-2018t)×(2017×20162×2015),
解得t=$\frac{2017}{2018}$.
故選:C.

點(diǎn)評(píng) 本題考查實(shí)數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等比數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.一個(gè)幾何體的三視圖如圖所示,則它的體積為( 。
A.$2\sqrt{2}$B.$2\sqrt{3}$C.$6\sqrt{2}$D.$6\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.若實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x≥0}\\{x-y+1≤0}\\{x+y-3≤0}\end{array}\right.$,則目標(biāo)函數(shù)z=3x-y的最大值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知定義域?yàn)閧x|x≠0}的偶函數(shù)f(x),其導(dǎo)函數(shù)為f′(x),對(duì)任意正實(shí)數(shù)x滿足xf′(x)>-2f(x),若g(x)=x2f(x),則不等式g(x)<g(1)的解集是(  )
A.(-∞,1)B.(-∞,0)∪(0,1)C.(-1,1)D.(-1,0)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.函數(shù)f(x)=ax+xlnx在x=1處取得極值.
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若y=f(x)-m-1在定義域內(nèi)有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.若點(diǎn)P是方程$\sqrt{{{(x-5)}^2}+{y^2}}-\sqrt{{{(x+5)}^2}+{y^2}}=6$所表示的曲線上的點(diǎn),同時(shí)P又是直線y=4上的點(diǎn),則點(diǎn)P的橫坐標(biāo)為$-3\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.不等式$\frac{x+3}{4-x}≥0$的解集為(  )
A.[-3,4]B.[-3,4)C.(-∞,-3)∪(3,+∞)D.(-∞,-3]∪(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若sinθ•cosθ>0,sinθ+cosθ<0,則tanθ-cosθ的值(  )
A.恒為正數(shù)B.恒為負(fù)數(shù)C.恒為非正數(shù)D.恒為非負(fù)數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.設(shè)點(diǎn)${F_1}(-\sqrt{3},0)$、${F_2}(\sqrt{3},0)$,動(dòng)點(diǎn)P滿足|PF1|+|PF2|=4,P的軌跡為曲線C.
(1)求曲線C的方程;
(2)過(guò)定點(diǎn)D(t,0)(|t|<2)作直線l交曲線C于A、B兩點(diǎn),設(shè)O為坐標(biāo)原點(diǎn),若直線l與x軸垂直,求△OAB面積的最大值;
(3)過(guò)點(diǎn)(1,0)作直線l交曲線C于A、B兩點(diǎn),在x軸上是否存在一點(diǎn)E,使直線AE和BE的斜率的乘積為非零常數(shù)?若存在,求出點(diǎn)E的坐標(biāo)和這個(gè)常數(shù);若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案