【題目】已知集合,集合,,滿(mǎn)足.

①每個(gè)集合都恰有5個(gè)元素

集合中元素的最大值與最小值之和稱(chēng)為集合的特征數(shù),記為,則 的值不可能為( )

A. B. C. D.

【答案】A

【解析】分析:求出集合M={x∈N*|1≤x≤15}={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15},由題意列舉出集合A1,A2,A3,排除選項(xiàng)B、C、D,由此能求出結(jié)果.

詳解:由題意集合M={x∈N*|1≤x≤15}={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15},

當(dāng)A1={1,4,5,6,7},A2={3,12,13,14,15},A3={2,8,9,10,11}時(shí),

X1+X2+X3=8+18+13=39,故排除B選項(xiàng);

當(dāng)A1={1,4,5,6,15},A2={2,7,8,9,14},A3={3,10,11,12,13}時(shí),

X1+X2+X3=16+16+16=48,故排除C選項(xiàng);

當(dāng)A1={1,2,3,4,15},A2={5,6,7,8,14},A3={9,10,11,12,13}時(shí),

X1+X2+X3=16+19+22=57,故排除D選項(xiàng).

∴X1+X2+X3的值不可能為37.

故選A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠采用甲、乙兩種不同生產(chǎn)方式生產(chǎn)某零件,現(xiàn)對(duì)兩種生產(chǎn)方式所生產(chǎn)的這種零件的產(chǎn)品質(zhì)量進(jìn)行對(duì)比,其質(zhì)量按測(cè)試指標(biāo)可劃分為:指標(biāo)在區(qū)間100的為一等品;指標(biāo)在區(qū)間的為二等品現(xiàn)分別從甲、乙兩種不同生產(chǎn)方式所生產(chǎn)的零件中,各自隨機(jī)抽取100件作為樣本進(jìn)行檢測(cè),測(cè)試指標(biāo)結(jié)果的頻率分布直方圖如圖所示:

若在甲種生產(chǎn)方式生產(chǎn)的這100件零件中按等級(jí),利用分層抽樣的方法抽取10件,再?gòu)倪@10件零件中隨機(jī)抽取3件,求至少有1件一等品的概率;

將頻率分布直方圖中的頻率視作概率,用樣本估計(jì)總體若從該廠采用乙種生產(chǎn)方式所生產(chǎn)的所有這種零件中隨機(jī)抽取3件,記3件零件中所含一等品的件數(shù)為X,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓,圓心為坐標(biāo)原點(diǎn)的單位圓OC的內(nèi)部,且與C有且僅有兩個(gè)公共點(diǎn),直線C只有一個(gè)公共點(diǎn).

1)求C的標(biāo)準(zhǔn)方程;

2)設(shè)不垂直于坐標(biāo)軸的動(dòng)直線l過(guò)橢圓C的左焦點(diǎn)F,直線lC交于A,B兩點(diǎn),且弦AB的中垂線交x軸于點(diǎn)P,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在四棱錐中,,的中點(diǎn),是等邊三角形,平面平面.

1)求證:平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解公司800名員工對(duì)公司食堂組建的需求程度,將這些員工編號(hào)為123,,800,對(duì)這些員工使用系統(tǒng)抽樣的方法等距抽取100人征求意見(jiàn),有下述三個(gè)結(jié)論:①若25號(hào)員工被抽到,則105號(hào)員工也會(huì)被抽到;②若32號(hào)員工被抽到,則1100號(hào)的員工中被抽取了10人;③若88號(hào)員工未被抽到,則10號(hào)員工一定未被抽到;其中正確的結(jié)論個(gè)數(shù)為(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形中,,的中點(diǎn),平面,且在矩形中,,.

1)求證:

2)求證:平面;

3)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在斜三棱柱中,平面平面,,,均為正三角形,EAB的中點(diǎn).

1)證明:平面,

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)討論的單調(diào)性;

2)設(shè),且,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直角中,,,D,E分別是AB,BC邊的中點(diǎn),沿DE折起至,且.

1)求四棱錐的體積;

2)求證:平面平面ACF.

查看答案和解析>>

同步練習(xí)冊(cè)答案