精英家教網 > 高中數學 > 題目詳情

(2013•天津)已知函數f(x)=x2lnx.
(1)求函數f(x)的單調區(qū)間;
(2)證明:對任意的t>0,存在唯一的s,使t=f(s).
(3)設(2)中所確定的s關于t的函數為s=g(t),證明:當t>e2時,有

(1)所以函數f(x)的單調遞減區(qū)間為(0,),單調遞增區(qū)間為( ,+∞)
(2)見解析    (3)見解析

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數(其中),為f(x)的導函數.
(1)求證:曲線y=在點(1,)處的切線不過點(2,0);
(2)若在區(qū)間中存在,使得,求的取值范圍;
(3)若,試證明:對任意恒成立.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知
(1)證明函數上是增函數;
(2)用反證法證明方程沒有負數根.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數為自然對數的底數).
(1)求曲線處的切線方程;
(2)若的一個極值點,且點滿足條件:.
(。┣的值;
(ⅱ)求證:點,是三個不同的點,且構成直角三角形.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=x3-3ax2+3x+1.
(1)設a=2,求f(x)的單調區(qū)間;
(2)設f(x)在區(qū)間(2,3)中至少有一個極值點,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)當時,求曲線在點處的切線方程;
(2)求函數的極值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)若函數上是增函數,求實數的取值范圍;
(2)若函數上的最小值為3,求實數的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=x3-3x2+2x
(1)在處的切線平行于直線,求點的坐標;
(2)求過原點的切線方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,其導函數的圖象經過點,如圖所示.
(1)求的極大值點;
(2)求的值;
(3)若,求在區(qū)間上的最小值.

查看答案和解析>>

同步練習冊答案