8.已知正實數(shù)x,y滿足2x+y=2,則$\frac{2}{x}$+$\frac{1}{y}$的最小值為$\frac{9}{2}$.

分析 利用“乘1法”與基本不等式的性質(zhì)即可得出.

解答 解:∵正實數(shù)x,y滿足2x+y=2,
則$\frac{2}{x}$+$\frac{1}{y}$=$\frac{1}{2}(2x+y)$$(\frac{2}{x}+\frac{1}{y})$=$\frac{1}{2}(5+\frac{2y}{x}+\frac{2x}{y})$≥$\frac{1}{2}(5+2×2×\sqrt{\frac{y}{x}×\frac{x}{y}})$=$\frac{9}{2}$,當(dāng)且僅當(dāng)x=y=$\frac{2}{3}$時取等號.
∴$\frac{2}{x}$+$\frac{1}{y}$的最小值為$\frac{9}{2}$.
故答案為:$\frac{9}{2}$.

點評 本題考查了“乘1法”與基本不等式的性質(zhì),考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若直線l1:(k-3)x+(k+4)y+1=0與l2:(k+1)x+2(k-3)y+3=0垂直,則實數(shù)k的值是(  )
A.3或-3B.3或4C.-3或-1D.-1或4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,四棱錐P-ABCD,底面ABCD為矩形,AB=PA=$\sqrt{3}$,AD=2,PB=$\sqrt{6}$,E為PB中點,且AE⊥PC.
(1)求證:PA⊥平面ABCD;
(2)線段BC上是否存在點M使得二面角P-MD-A的大小為60°?若存在,求出BM的長,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.某公司租賃甲、乙兩種設(shè)備生產(chǎn)A,B兩類產(chǎn)品,甲種設(shè)備每天能生產(chǎn)A類產(chǎn)品5件和B類產(chǎn)品10件,乙種設(shè)備每天能生產(chǎn)A類產(chǎn)品6件和B類產(chǎn)品20件.已知設(shè)備甲每天的租賃費為2000元,設(shè)備乙每天的租賃費為3000元,現(xiàn)該公司至少要生產(chǎn)A類產(chǎn)品50件,B類產(chǎn)品140件,所需租賃費最少為23000元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.知函數(shù)f(x)=cos2ωx-sin2ωx+2$\sqrt{3}$cosωxsinωx+t(ω>0),若f(x)圖象上有相鄰兩個對稱軸間的距離為$\frac{3π}{2}$,且當(dāng)x∈[0,π]時,函數(shù)f(x)的最小值為0.
(1)求函數(shù)f(x)的表達(dá)式;
(2)在△ABC中,若f(B)=1,且2sin2C=cosC+cos(A-B),求∠B與sinA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在平面直角坐標(biāo)系xOy中,以x軸正半軸為始邊作銳角α,其終邊與單位圓交于點A.以O(shè)A為始邊作銳角β,其終邊與單位圓交于點B,AB=$\frac{{2\sqrt{5}}}{5}$.
(1)求cosβ的值;
(2)若點A的橫坐標(biāo)為$\frac{5}{13}$,求點B的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖是某幾何體的三視圖,其正視圖,側(cè)視圖均為直徑為2的半圓,俯視圖是直徑為2的圓,則該幾何體的表面積為( 。
A.B.C.D.12π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若函數(shù)f(x)對定義域內(nèi)的任意x1,x2,當(dāng)f(x1)=f(x2)時,總有x1=x2,則稱函數(shù)f(x)為單純函數(shù),例如函數(shù)f(x)=x是單純函數(shù),但函數(shù)f(x)=x2不是單純函數(shù),下列命題:
①函數(shù)$f(x)=\left\{\begin{array}{l}{log_2}x,x≥2\\ x-1,x<2\end{array}\right.$是單純函數(shù);
②當(dāng)a>-2時,函數(shù)$f(x)=\frac{{{x^2}+ax+1}}{x}$在(0,+∞)上是單純函數(shù);
③若函數(shù)f(x)為其定義域內(nèi)的單純函數(shù),x1≠x2,則f(x1)≠f(x2);
④若函f(x)數(shù)是單純函數(shù)且在其定義域內(nèi)可導(dǎo),則在其定義域內(nèi)一定存在x0使其導(dǎo)數(shù)f'(x0)=0.
其中正確的命題為①③.(填上所有正確的命題序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.從數(shù)字1,2,3,4中任取兩個不同的數(shù)字構(gòu)成一個兩位數(shù),這個兩位數(shù)大于20的概率是(  )
A.$\frac{1}{4}$B.$\frac{3}{4}$C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

同步練習(xí)冊答案