【題目】如圖,四邊形是邊長(zhǎng)為的正方形,的中點(diǎn),以為折痕把折起,使點(diǎn)到達(dá)點(diǎn)的位置,且二面角為直二面角,連結(jié).

(1)記平面與平面相較于,在圖中作出,并說(shuō)明畫(huà)法;

(2)求直線與平面所成角的正弦值.

【答案】(1)詳見(jiàn)解析(2)

【解析】

(1)只需延長(zhǎng)交于點(diǎn),連結(jié),即可滿(mǎn)足是平面與平面的交線;

(2)先作用,得到兩兩垂直,以點(diǎn)為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,求出平面的法向量,和直線的方向向量,由向量的夾角公式結(jié)合線面角的范圍,即可求出結(jié)果.

解:(1)延長(zhǎng)交于點(diǎn),連接,則直線即為.

(2)過(guò),則,所以是二面角的平面角的補(bǔ)角,因?yàn)槎娼?/span>為直二面角,從而,即.

為坐標(biāo)原點(diǎn),分別以軸,軸,軸正方向建立空間直角坐標(biāo)系,如圖,在中,,所以,從而,所以,,又,,則,,,

所以,

設(shè)平面的法向量為,則

,,

所以,

設(shè)直線與平面所成角為,則,

所以直線與平面所成角的正弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一個(gè)六邊形點(diǎn)陣,它的中心是1個(gè)點(diǎn)(第1層),第2層每邊有2個(gè)點(diǎn), 3層每邊有3個(gè)點(diǎn),,依此類(lèi)推,若一個(gè)六邊形點(diǎn)陣共有217個(gè)點(diǎn),那么它的層數(shù)為(

A.10B.9C.8D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某火鍋店為了解氣溫對(duì)營(yíng)業(yè)額的影響,隨機(jī)記錄了該店1月份中5天的日營(yíng)業(yè)額y(單位:千元)與該地當(dāng)日最低氣溫x(單位:℃)的數(shù)據(jù),如下表:

x

2

5

8

9

11

y

12

10

8

8

7

1)求y關(guān)于x的回歸方程;

2)判定yx之間是正相關(guān)還是負(fù)相關(guān);若該地1月份某天的最低氣溫為6℃,用所求回歸方程預(yù)測(cè)該店當(dāng)日的營(yíng)業(yè)額;

附:①;.

②參考數(shù)據(jù)如下:

i

1

2

12

4

24

2

5

10

25

50

3

8

8

64

64

4

9

8

81

72

5

11

7

121

77

35

45

295

287

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,過(guò)點(diǎn)的直線的參數(shù)方程為為參數(shù)),直線與曲線相交于兩點(diǎn).

(1)寫(xiě)出曲線的直角坐標(biāo)方程和直線的普通方程;

(2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓、拋物線的焦點(diǎn)均在軸上,的中心和的頂點(diǎn)均為原點(diǎn),從每條曲線上取兩個(gè)點(diǎn),將其坐標(biāo)記錄于下表中:


3

2

4




0

4


)求的標(biāo)準(zhǔn)方程;

)請(qǐng)問(wèn)是否存在直線滿(mǎn)足條件:過(guò)的焦點(diǎn)交不同兩點(diǎn)且滿(mǎn)足?若存在,求出直線的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市對(duì)創(chuàng)“市級(jí)示范性學(xué)校”的甲、乙兩所學(xué)校進(jìn)行復(fù)查驗(yàn)收,對(duì)辦學(xué)的社會(huì)滿(mǎn)意度一項(xiàng)評(píng)價(jià)隨機(jī)訪問(wèn)了20為市民,這20位市民對(duì)這兩所學(xué)校的評(píng)分(評(píng)分越高表明市民的評(píng)價(jià)越好)的數(shù)據(jù)如下:

甲校:58,66,71,58,67,72,82,92,83,86,67,59,86,72,78,59,68,69,73,81;

乙校:90,80,73,65,67,69,81,85,82,88,89,86,86,78,98,95,96,91,76,69,.

檢查組將成績(jī)分成了四個(gè)等級(jí):成績(jī)?cè)趨^(qū)間的為等,在區(qū)間的為等,在區(qū)間的為等,在區(qū)間等.

(1)請(qǐng)用莖葉圖表示上面的數(shù)據(jù),并通過(guò)觀察莖葉圖,對(duì)兩所學(xué)校辦學(xué)的社會(huì)滿(mǎn)意度進(jìn)行比較,寫(xiě)出兩個(gè)統(tǒng)計(jì)結(jié)論;

(2)估計(jì)哪所學(xué)校的市民的評(píng)分等級(jí)為級(jí)或級(jí)的概率大,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時(shí),判斷函數(shù)的單調(diào)性;

(2)當(dāng)有兩個(gè)極值點(diǎn)時(shí),求a的取值范圍,并證明的極大值大于2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求直線的普通方程與曲線的直角坐標(biāo)方程;

(2)若直線與曲線交于兩點(diǎn),且設(shè)定點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ln (x+1)-x,a∈R.

(1)當(dāng)a>0時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;

(2)若存在x>0,使f(x)+x+1<- (a∈Z)成立,求a的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案