(2013•遼寧)為了考察某校各班參加課外小組的人數(shù),從全校隨機(jī)抽取5個(gè)班級(jí),把每個(gè)班級(jí)參加該小組的人數(shù)作為樣本數(shù)據(jù),已知樣本平均數(shù)為7,樣本方差為4,且樣本數(shù)據(jù)互不相同,則樣本數(shù)據(jù)中的最大值為
10
10
分析:本題可運(yùn)用平均數(shù)公式求出平均數(shù),再運(yùn)用方差的公式列出方差表達(dá)式,再討論樣本數(shù)據(jù)中的最大值的情況,即可解決問(wèn)題.
解答:解:設(shè)樣本數(shù)據(jù)為:x1,x2,x3,x4,x5,
平均數(shù)=(x1+x2+x3+x4+x5)÷5=7;
方差s2=[(x1-7)2+(x2-7)2+(x3-7)2+(x4-7)2+(x5-7)2]÷5=4.
從而有x1+x2+x3+x4+x5=35,①
(x1-7)2+(x2-7)2+(x3-7)2+(x4-7)2+(x5-7)2=20.②
若樣本數(shù)據(jù)中的最大值為11,不妨設(shè)x5=11,則②式變?yōu)椋?BR>(x1-7)2+(x2-7)2+(x3-7)2+(x4-7)2=4,由于樣本數(shù)據(jù)互不相同,這是不可能成立的;
若樣本數(shù)據(jù)為4,6,7,8,10,代入驗(yàn)證知①②式均成立,此時(shí)樣本數(shù)據(jù)中的最大值為 10.
故答案為:10.
點(diǎn)評(píng):本題考查的是平均數(shù)和方差的求法.計(jì)算方差的步驟是:①計(jì)算數(shù)據(jù)的平均數(shù);②計(jì)算偏差,即每個(gè)數(shù)據(jù)與平均數(shù)的差;③計(jì)算偏差的平方和;④偏差的平方和除以數(shù)據(jù)個(gè)數(shù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•遼寧一模)已知:函數(shù)f(x)=-x3+mx在(0,1)上是增函數(shù).
(1)求實(shí)數(shù)m的取值的集合A;
(2)當(dāng)m取集合A中的最小值時(shí),定義數(shù)列{an}:滿足a1=3,且an>0,an+1=
-3f(an)+9
-2
,求數(shù)列{an}的通項(xiàng)公式
(3)若bn=nan數(shù)列{bn}的前n項(xiàng)和為Sn,求證:Sn
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•遼寧一模)已知直線l是過(guò)點(diǎn)P(-1,2),方向向量為
n
=(-1,
3
)
的直線,圓方程ρ=2cos(θ+
π
3
)

(1)求直線l的參數(shù)方程
(2)設(shè)直線l與圓相交于M,N兩點(diǎn),求|PM|•|PN|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•遼寧)已知三棱柱ABC-A1B1C1的6個(gè)頂點(diǎn)都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,則球O的半徑為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•遼寧)某學(xué)校組織學(xué)生參加英語(yǔ)測(cè)試,成績(jī)的頻率分布直方圖如圖,數(shù)據(jù)的分組一次為[20,40),[40,60),[60,80),[80,100).若低于60分的人數(shù)是15人,則該班的學(xué)生人數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•遼寧二模)風(fēng)景秀美的鳳凰湖畔有四棵高大的銀杏樹(shù),記做A、B、P、Q,欲測(cè)量P、Q兩棵樹(shù)和A、P兩棵樹(shù)之間的距離,但湖岸部分地方圍有鐵絲網(wǎng)不能靠近,現(xiàn)在可以方便的測(cè)得A、B兩點(diǎn)間的距離為AB=100米,如圖,同時(shí)也能測(cè)量出∠PAB=75°,∠QAB=45°,∠PBA=60°,∠QBA=90°,則P、Q兩棵樹(shù)和A、P兩棵樹(shù)之間的距離各為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案