在直三棱柱ABC-A1B1C1中,A1A=AB=3
2
,AC=3,∠CAB=90°,P、Q分別為棱BB1、CC1上的點(diǎn),且BP=
1
3
BB1,CQ=
2
3
CC1
(1)求平面APQ與面ABC所成的銳二面角的大。
(2)在線(xiàn)段A1B(不包括兩端點(diǎn))上是否存在一點(diǎn)M,使AM+MC1最?若存在,求出最小值;若不存在,說(shuō)明理由.
考點(diǎn):二面角的平面角及求法,多面體和旋轉(zhuǎn)體表面上的最短距離問(wèn)題
專(zhuān)題:空間位置關(guān)系與距離
分析:(1)以A為原點(diǎn)建立空間直角坐標(biāo)系A(chǔ)-xyz,利用向量法能求出平面APQ與面ABC所成的銳角大。
(2)沿A1B將面A1BC1與面A1BA展開(kāi),連結(jié)AC1與A1B交于M,此時(shí)AM+MC1有最小值.由此能求出存在點(diǎn)M,使AM+AC1取最小值為3
5
解答: 解:(1)建立如圖所示空間直角坐標(biāo)系A(chǔ)-xyz,
A(0,0,0),P(3
2
,0,
2
),Q(0,3,2
2
).
設(shè)平面APQ的一個(gè)法向量為
n1
=(x,y,z),
n1
AP
=3
2
x+
2
z=0
n1
AQ
=3y+2
2
z=0
,
令z=3,得
n1
=(-1,-2
2
,3),
平面ABC的一個(gè)法向量
n2
=(0,0,1),
∴cos<
n1
n2
>=
3
1+8+9
=
2
2
,
∴平面APQ與面ABC所成的銳角大小為45°.…(6分)
(2)沿A1B將面A1BC1與面A1BA展開(kāi),
連結(jié)AC1與A1B交于M,此時(shí)AM+MC1有最小值.
∵∠A1AB=90°,AA1=AB,∴∠A1AB=45°,
又C1A1⊥面ABB1A1,∴C1A1⊥A1B.
∴△AA1C1中,∠AA1C1=135°,
AC1=
AA12+A1C12-2AA1A1C1•cos135°

=
18+9+18
=3
5
,
∴存在點(diǎn)M,使AM+AC1取最小值為3
5
點(diǎn)評(píng):本題考查平面APQ與面ABC所成的銳二面角的大小的求法,考查在線(xiàn)段A1B(不包括兩端點(diǎn))上是否存在一點(diǎn)M,使AM+MC1最小的判斷與求法,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)是偶函數(shù)的是( 。
A、y=sinx
B、y=cosx
C、y=tanx
D、以上都不是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線(xiàn)l:y=x+2,一個(gè)圓的圓心C在x軸上且該圓與y軸相切,該圓經(jīng)過(guò)點(diǎn)A(-1,2).則圓C的方程為
 
;直線(xiàn)l被圓截得的弦長(zhǎng)等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線(xiàn)的參數(shù)方程為
x=-1+2t
y=1+
2
3
3
t
,直線(xiàn)l2的方程為x=3,則l1與l2的交點(diǎn)到點(diǎn)A(-1,1)的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

n個(gè)人隨機(jī)進(jìn)入n個(gè)房間,每個(gè)人可以進(jìn)入任何一個(gè)房間,且進(jìn)入各房間是等可能的,則每個(gè)房間恰好進(jìn)入一個(gè)人的概率為(  )
A、
1
n
B、
n!
nn
C、
1
(n-1)!
D、
(n-1)!
nn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正三棱柱A1B1C1-ABC中,AA1=AB=a,D是CC1的中點(diǎn),F(xiàn)是A1B的中點(diǎn),A1D與AC的延長(zhǎng)線(xiàn)交于點(diǎn)M(如圖),
(Ⅰ)求證:DF∥平面ABC;
(Ⅱ)求證:AF⊥BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知2
a
+
b
=(0,1),
c
=(1,-1),
a
c
=1,|
b
|=3,則
b
c
的夾角為 ( 。
A、
2
3
π
B、
π
3
C、
3
4
π
D、
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某水庫(kù)年初有水量a(a≥10000),其中含污染  物 p0(設(shè)水與污染 物能很好的混合),當(dāng)年的降水量與月份x的關(guān)系是f(x)=20-|x-7|(1≤x≤12,x∈N),而每月流入水庫(kù)的污水與蒸發(fā)的水量都為r,且污水含污染物p(p<r),設(shè)當(dāng)年水庫(kù)中的水不作它用.
(1)求第x月份水庫(kù)的含污比g(x)的表達(dá)式(含污比=
污染物
總庫(kù)容
);
(2)當(dāng)時(shí)p0=0,求水質(zhì)最差的月份及此月的含污比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將一顆質(zhì)地均勻的骰子先后拋擲2次,記第一次出現(xiàn)的點(diǎn)數(shù)為m,記第二次出現(xiàn)的點(diǎn)數(shù)為n,向量
a
=(m-2,2-n),
b
=(1,1),則
a
b
共線(xiàn)的概率為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案