【題目】設(shè)函數(shù)f(x)=ln(1+x)﹣ln(1﹣x),則f(x)是(
A.奇函數(shù),且在(0,1)上是增函數(shù)
B.奇函數(shù),且在(0,1)上是減函數(shù)
C.偶函數(shù),且在(0,1)上是增函數(shù)
D.偶函數(shù),且在(0,1)上是減函數(shù)

【答案】A
【解析】解:函數(shù)f(x)=ln(1+x)﹣ln(1﹣x),函數(shù)的定義域為(﹣1,1),
函數(shù)f(﹣x)=ln(1﹣x)﹣ln(1+x)=﹣[ln(1+x)﹣ln(1﹣x)]=﹣f(x),所以函數(shù)是奇函數(shù).
排除C,D,正確結(jié)果在A,B,只需判斷特殊值的大小,即可推出選項,x=0時,f(0)=0;
x= 時,f( )=ln(1+ )﹣ln(1﹣ )=ln3>1,顯然f(0)<f( ),函數(shù)是增函數(shù),所以B錯誤,A正確.
故選:A.
求出好的定義域,判斷函數(shù)的奇偶性,以及函數(shù)的單調(diào)性推出結(jié)果即可.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知定義域為R的函數(shù) 是奇函數(shù).
(1)求實數(shù)a,b的值;
(2)判斷f(x)在(﹣∞,+∞)上的單調(diào)性;
(3)若f(k3x)+f(3x﹣9x+2)>0對任意x≥1恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐中,底面為矩形, 底面, , 上一點, 的中點.

1)在圖中作出平面的交點,并指出點所在位置(不要求給出理由);

2)求平面將四棱錐分成上下兩部分的體積比.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列四個命題:
①函數(shù)y=|x|與函數(shù)y= 表示同一個函數(shù);
②奇函數(shù)的圖象一定通過直角坐標系的原點;
③函數(shù)y=3(x﹣1)2的圖象可由y=3x2的圖象向右平移1個單位得到;
④若函數(shù)f(x)的定義域為[0,2],則函數(shù)f(2x)的定義域為[0,4];
⑤設(shè)函數(shù)f(x)是在區(qū)間[a.b]上圖象連續(xù)的函數(shù),且f(a)f(b)<0,則方程f(x)=0在區(qū)間[a,b]上至少有一實根.
其中正確命題的序號是 . (填上所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)的右焦點為F2(1,0),點P(1, )在橢圓C上.
(1)求橢圓C的方程;
(2)過坐標原點O的兩條直線EF,MN分別與橢圓C交于E,F(xiàn),M,N四點,且直線OE,OM的斜率之積為﹣ ,求證:四邊形EMFN的面積為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x|2﹣a≤x≤2+a},B={x|x≤1或x≥4}.
(1)當a=3時,求A∩B;
(2)若A∩B=,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)f(x)=log2(4x)log2(2x),且x滿足4﹣17x+4x2≤0,求f(x)的最值,并求出取得最值時,對應(yīng)f(x)的 值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從4名男生,3名女生中選出三名代表,
(1)不同的選法共有多少種?
(2)至少有一名女生的不同的選法共有多少種?
(3)代表中男、女生都有的不同的選法共有多少種?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .

(1)討論函數(shù)的單調(diào)性;

(2)若函數(shù)在區(qū)間有唯一零點,證明: .

查看答案和解析>>

同步練習冊答案