【題目】如圖,在正方體中,作棱錐,其中點(diǎn)在側(cè)棱所在直線上,,,的中點(diǎn).

1)證明:平面;

2)求為軸旋轉(zhuǎn)所圍成的幾何體體積.

【答案】1)證明見(jiàn)解析;(2.

【解析】

(1)本題首先可以連接并連接,然后根據(jù)的中位線得出,即可根據(jù)線面平行的判定證得平面;

(2)本題首先可以過(guò)的垂線并令垂足為,然后根據(jù)題意得出幾何體的形狀,再然后求出的長(zhǎng),最后根據(jù)圓錐的體積公式即可得出結(jié)果.

(1)如圖,連接,連接,

因?yàn)樗倪呅?/span>是正方形,所以中點(diǎn),

因?yàn)?/span>的中點(diǎn),所以的中位線,

因?yàn)?/span>包含于平面,不包含于平面

所以平面,

(2)如圖,過(guò)的垂線,垂足為,則為軸旋轉(zhuǎn)所圍成的幾何體是以為半徑并且分別以為高的兩個(gè)圓錐的旋轉(zhuǎn)體,

因?yàn)閭?cè)棱底面,包含于底面,所以,

因?yàn)?/span>,,所以

因?yàn)?/span>,所以,

所以為軸旋轉(zhuǎn)所圍成的幾何體體積為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】盒子中裝有四張大小形狀均相同的卡片,卡片上分別標(biāo)有數(shù)其中是虛數(shù)單位.稱“從盒中隨機(jī)抽取一張,記下卡片上的數(shù)后并放回”為一次試驗(yàn)(設(shè)每次試驗(yàn)的結(jié)果互不影響).

(1)求事件在一次試驗(yàn)中,得到的數(shù)為虛數(shù)”的概率與事件在四次試驗(yàn)中,

至少有兩次得到虛數(shù)” 的概率;

(2)在兩次試驗(yàn)中,記兩次得到的數(shù)分別為,求隨機(jī)變量的分布列與數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,短軸長(zhǎng)和焦距都等于2, 是橢圓上的一點(diǎn),且在第一象限內(nèi),過(guò)且斜率等于的直線與橢圓交于另一點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為.

)證明:直線的斜率為定值;

)求面積的最大值,并求此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)試討論函數(shù)的極值點(diǎn)情況;

(2)當(dāng)為何值時(shí),不等式)恒成立?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,且短軸長(zhǎng)為2.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)已知分別為橢圓的左右頂點(diǎn), ,,且,直線分別與橢圓交于兩點(diǎn),

(i)用表示點(diǎn)的縱坐標(biāo);

(ii)若面積是面積的5倍,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖①是一棟新農(nóng)村別墅,它由上部屋頂和下部主體兩部分組成.如圖②,屋頂由四坡屋面構(gòu)成,其中前后兩坡屋面ABFE和CDEF是全等的等腰梯形,左右兩坡屋面EAD和FBC是全等的三角形.點(diǎn)F在平面ABCD和BC上的射影分別為H,M.已知HM 5 m,BC 10 m,梯形ABFE的面積是△FBC面積的2.2倍.設(shè)∠FMH

(1)求屋頂面積S關(guān)于的函數(shù)關(guān)系式;

(2)已知上部屋頂造價(jià)與屋頂面積成正比,比例系數(shù)為k(k為正的常數(shù)),下部主體造價(jià)與其 高度成正比,比例系數(shù)為16 k.現(xiàn)欲造一棟上、下總高度為6 m的別墅,試問(wèn):當(dāng)為何值時(shí),總造價(jià)最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時(shí),求函數(shù)的極值;

(2)設(shè)函數(shù)處的切線方程為,若函數(shù)上的單調(diào)增函數(shù),求的值;

(3)是否存在一條直線與函數(shù)的圖象相切于兩個(gè)不同的點(diǎn)?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】研究變量,得到一組樣本數(shù)據(jù),進(jìn)行回歸分析,有以下結(jié)論

①殘差平方和越小的模型,擬合的效果越好;

②用相關(guān)指數(shù)來(lái)刻畫(huà)回歸效果,越小說(shuō)明擬合效果越好;

③線性回歸方程對(duì)應(yīng)的直線至少經(jīng)過(guò)其樣本數(shù)據(jù)點(diǎn)中的一個(gè)點(diǎn);

④若變量之間的相關(guān)系數(shù)為,則變量之間的負(fù)相關(guān)很強(qiáng).

以上正確說(shuō)法的個(gè)數(shù)是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地舉辦水果觀光采摘節(jié),并推出配套旅游項(xiàng)目,統(tǒng)計(jì)了4月份100名游客購(gòu)買水果的情況,得到如圖所示的頻率分布直方圖.

1)若將消費(fèi)金額不低于80元的游客稱為“水果達(dá)人”,現(xiàn)用分層抽樣的方法從樣本的“水果達(dá)人”中抽取5人,求這5人中消費(fèi)金額不低于100元的人數(shù);

2)從(1)中的5人中抽取2人作為幸運(yùn)客戶免費(fèi)參加配套旅游項(xiàng)目,請(qǐng)列出所有的可能結(jié)果,并求這2人中至少有1人購(gòu)買金額不低于100元的概率;

3)為吸引顧客,該地特推出兩種促銷方案,

方案一:每滿80元可立減8元;

方案二:金額超過(guò)50元但又不超過(guò)80元的部分打9折,金額超過(guò)80元但又不超過(guò)100元的部分打8折,金額超過(guò)100元的部分打7折.

若水果的價(jià)格為11元/千克,某游客要購(gòu)買10千克,應(yīng)該選擇哪種方案.

查看答案和解析>>

同步練習(xí)冊(cè)答案