5.已知圓C的方程為x2+y2-2x-4y-1=0,直線l:ax+by-2=0(a>0,b>0),若直線l始終平分圓C,則ab的最大值為( 。
A.$\frac{1}{2}$B.$\frac{1}{4}$C.1D.2

分析 由已知得圓心C(1,2)在直線ax+by-2=0上,從而a+2b-2=0,由此利用均值定理能求出ab的最大值.

解答 解:∵圓C的方程為x2+y2-2x-4y-1=0,直線l:ax+by-2=0(a>0,b>0),
直線l始終平分圓C,
∴圓心C(1,2)在直線ax+by-2=0上,
∴a+2b-2=0,
∵a>0,b>0,
2ab≤($\frac{a+2b}{2}$)2=1,∴ab≤$\frac{1}{2}$.
∴當(dāng)且僅當(dāng)a=2b=1時(shí),ab取最大值$\frac{1}{2}$.
故選:A.

點(diǎn)評(píng) 本題考查兩數(shù)積的最大值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意圓的性質(zhì)、均值定理的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.直線傾斜角的范圍是( 。
A.(0,$\frac{π}{2}$]B.[0,$\frac{π}{2}$]C.[0,π)D.[0,π]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.某人射擊7槍,擊中5槍,問(wèn)擊中和未擊中的不同的順序情況有(  )
A.21種B.20種C.19種D.16種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)$f(x)=-alnx+\frac{{2{a^2}}}{x}+x(a∈R)$.
(1)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)當(dāng)a>0時(shí),若函數(shù)f(x)在[1,e]上的最小值記為g(a),請(qǐng)寫(xiě)出g(a)的函數(shù)表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.在平面直角坐標(biāo)系xOy中,動(dòng)點(diǎn)P到點(diǎn)A(-1,0)及點(diǎn)B(1,0)的距離之和為4,且直線l:y=kx+2與P點(diǎn)的軌跡C有兩個(gè)不同的交點(diǎn)M,N.
(1)求k的取值范圍;
(2)設(shè)軌跡C于y軸的負(fù)半軸交于點(diǎn)Q,求△MNQ的面積的最大值及對(duì)應(yīng)的k值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知過(guò)拋物線y2=$\frac{16}{3}$x的焦點(diǎn)F的直線l交拋物線于A,B兩點(diǎn),交其準(zhǔn)線于C點(diǎn),已知$\overrightarrow{CB}$=3$\overrightarrow{BF}$,則線段AB的中點(diǎn)M到準(zhǔn)線的距離為( 。
A.$\frac{8}{3}$B.3C.$\frac{16}{3}$D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知拋物線y2=2px(p>0)的準(zhǔn)線與x軸交于點(diǎn)N,過(guò)點(diǎn)N作圓M:(x-2)2+y2=1的兩條切線,切點(diǎn)為P、Q,且|PQ|=$\frac{4\sqrt{2}}{3}$.
(1)求拋物線的方程;
(2)過(guò)拋物線的焦點(diǎn)F作斜率為k1的直線與拋物線交于A、B兩點(diǎn),A、B兩點(diǎn)的橫坐標(biāo)均不為2,連接AM,BM并延長(zhǎng)分別交拋物線于C、D兩點(diǎn),設(shè)直線CD的斜率為k2,問(wèn)$\frac{{k}_{1}}{{k}_{2}}$是否為定值?若是,求出該定值;若不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)φ(x)=$\frac{a}{x+1}$,a>0
(Ⅰ)若函數(shù)f(x)=lnx+φ(x),在(1,2)上只有一個(gè)極值點(diǎn),求a的取值范圍;
(Ⅱ)若g(x)=|lnx|+φ(x),且對(duì)任意x1,x2∈(0,2],且x1≠x2,都有$\frac{g({x}_{1})-g({x}_{2})}{{x}_{1}-{x}_{2}}$<-1,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知三棱錐S-ABC中,底面ABC為邊長(zhǎng)等于$\sqrt{3}$的等邊三角形,SA垂直于底面ABC,SA=1,那么三棱錐S-ABC的外接球的表面積為( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案