定義在R上的函數(shù)滿足:的圖像關(guān)于軸對稱,并且對任意的,則當(dāng)時,有(    )
A.B.
C.D.
A

試題分析:由已知,函數(shù)為偶函數(shù),且在是增函數(shù),所以在(0,+)是減函數(shù)。而n+1>n>n-1,所以,選A。
點評:基礎(chǔ)題,注意理解是增函數(shù)的另一種表現(xiàn)形式。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
某種產(chǎn)品投放市場以來,通過市場調(diào)查,銷量t(單位:噸)與利潤Q(單位:萬元)的變化關(guān)系如右表,現(xiàn)給出三種函數(shù),,,請你根據(jù)表中的數(shù)據(jù),選取一個恰當(dāng)?shù)暮瘮?shù),使它能合理描述產(chǎn)品利潤Q與銷量t的變化,求所選取的函數(shù)的解析式,并求利潤最大時的銷量.
銷量t
1
4
6
利潤Q
2
5
4.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)上的偶函數(shù),滿足,當(dāng)時,,則(    )
A.    B.
C.   D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知函數(shù)
(Ⅰ)若函數(shù)處取得極值,求實數(shù)a的值;
(Ⅱ)在(I)條件下,若直線與函數(shù)的圖象相切,求實數(shù)k的值;
(Ⅲ)記,求滿足條件的實數(shù)a的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知其中.(1)求函數(shù)的單調(diào)區(qū)間;(2)若函數(shù)在區(qū)間內(nèi)恰有兩個零點,求的取值范圍;
(3)當(dāng)時,設(shè)函數(shù)在區(qū)間上的最大值為最小值為,記,求函數(shù)在區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分8分) 某車間生產(chǎn)某機器的兩種配件A和B,生產(chǎn)配件A成本費y與該車間的工人人數(shù)x成反比,而生產(chǎn)配件B成本費y與該車間的工人人數(shù)x成正比,如果該車間的工人人數(shù)為10人時,這兩項費用y和y分別為2萬元和8萬元,那么要使這兩項費用之和最小,該車間的工人人數(shù)x應(yīng)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若方程無實數(shù)解,則實數(shù)的取值范圍是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題12分)已知函數(shù)
⑴若函數(shù)的圖象過原點,且在原點處的切線斜率是,求的值;
⑵若函數(shù)在區(qū)間上不單調(diào),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),且處取得極值.
(1)求的值;
(2)若當(dāng)時,恒成立,求的取值范圍;
(3)對任意的是否恒成立?如果成立,給出證明,如果不成立,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案