17.在面積為S的正方形ABCD內(nèi)任意投一點(diǎn)M,則點(diǎn)M到四邊的距離均大于$\frac{{2\sqrt{S}}}{5}$的概率為( 。
A.$\frac{2}{5}$B.$\frac{3}{5}$C.$\frac{1}{25}$D.$\frac{4}{25}$

分析 由正方形面積求得邊長,得到滿足到四邊的距離均大于$\frac{{2\sqrt{S}}}{5}$的點(diǎn)在以$\frac{\sqrt{S}}{5}$為邊長的正方形區(qū)域內(nèi),求出點(diǎn)M所在區(qū)域面積,由面積比得答案.

解答 解:由正方形面積為S,可得邊長為$\sqrt{S}$,
則滿足到四邊的距離均大于$\frac{{2\sqrt{S}}}{5}$的點(diǎn)在以$\frac{\sqrt{S}}{5}$為邊長的正方形區(qū)域內(nèi).
所占區(qū)域面積為$(\frac{\sqrt{S}}{5})^{2}=\frac{S}{25}$.
由測度比為面積比可得點(diǎn)M到四邊的距離均大于$\frac{{2\sqrt{S}}}{5}$的概率為$\frac{\frac{S}{25}}{S}=\frac{1}{25}$.
故選:C.

點(diǎn)評 本題考查幾何概型,正確求出點(diǎn)M所在區(qū)域面積是關(guān)鍵,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,過點(diǎn)A(6,4)作曲線f(x)=$\sqrt{4x-8}$的切線l.
(1)求切線l的方程;
(2)求切線l、x軸及曲線f(x)=$\sqrt{4x-8}$所圍成的封閉圖形的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.平面直角坐標(biāo)系xOy中,已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{3}}}{2}$,且點(diǎn)$(\sqrt{3},\frac{1}{2})$在橢圓C上.橢圓C的左頂點(diǎn)為A.
(1)求橢圓C的方程;
(2)過點(diǎn)A作直線l與橢圓C交于另一點(diǎn)B.若直線l交y軸于點(diǎn)C,且OC=BC,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)函數(shù)f(x)=ex-ax-1
(1)若函數(shù)f(x)在R上單調(diào)遞增,求α的取值范圍;
(2)當(dāng)α>0時(shí),設(shè)函數(shù)f(x)的最小值為g(a),求證:g(a)≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列函數(shù)中,在其定義域內(nèi)既是奇函數(shù)又是增函數(shù)的是( 。
A.y=-$\frac{1}{x}$B.y=|x|C.y=x${\;}^{\frac{1}{3}}$D.y=sinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=lg($\sqrt{1+{x}^{2}}$-x)-1,則f(ln2)+f(ln$\frac{1}{2}$)=( 。
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在△ABC中,角A,B,C所對的邊分別為a,b,c.$\overrightarrow m=(\sqrt{3}a{,_{\;}}b)$,$\overrightarrow n=(cosB,sinA)$
(Ⅰ)若$\overrightarrow m•\overrightarrow n=\sqrt{3}$c,求角A;
(Ⅱ)若向量$\overrightarrow m$與向量$\overrightarrow g=(1,1)$共線,c=2,且△ABC的面積為$\sqrt{3}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),右焦點(diǎn)為F(c,0),A(0,2),且|AF|=$\sqrt{7}$,橢圓C的離心率為$\frac{\sqrt{3}}{2}$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)直線l的方程為y=kx+m,當(dāng)直線l與橢圓C有唯一公共點(diǎn)M時(shí),作OH⊥l于H(O為坐標(biāo)原點(diǎn)),若|MH|=$\frac{3}{5}$|OM|,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知單位向量$\vec a,\vec b$,若向量$2\vec a-\vec b$與$\vec b$垂直,則向量$\vec a$與$\vec b$的夾角為60°

查看答案和解析>>

同步練習(xí)冊答案