4.函數(shù)$f(x)=sinx-cos(x-\frac{π}{6})$的值域為( 。
A.$[-\frac{{\sqrt{3}}}{2},\frac{{\sqrt{3}}}{2}]$B.$[-\sqrt{3},\sqrt{3}]$C.[-2,2]D.[-1,1]

分析 通過兩角差的余弦函數(shù)化簡函數(shù)的表達(dá)式,利用兩角差的正弦函數(shù)化為一個角的一個三角函數(shù)的形式,求出函數(shù)的值域.

解答 解:∵f(x)=sinx-cos(x-$\frac{π}{6}$)
=sinx-$\frac{\sqrt{3}}{2}$cosx-$\frac{1}{2}$sinx
=$\frac{1}{2}$sinx-$\frac{\sqrt{3}}{2}$cosx
=sin(x-$\frac{π}{3}$).
∴函數(shù)f(x)=sinx-cos(x-$\frac{π}{6}$)的值域為[-1,1].
故選:D.

點評 本題考查三角函數(shù)中的恒等變換應(yīng)用,正弦函數(shù)的定義域和值域,考查計算能力,利用兩角差的正弦函數(shù)化為一個角的一個三角函數(shù)的形式是關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某購物中心為了了解顧客使用新推出的某購物卡的顧客的年齡分布情況,隨機(jī)調(diào)查了100位到購物中心購物的顧客年齡,并整理后畫出頻率分布直方圖如圖所示,年齡落在區(qū)間[55,65),[65,75),[75,85]內(nèi)的頻率之比為4:2:1.
(1)求顧客年齡值落在區(qū)間[75,85]內(nèi)的頻率;
(2)擬利用分層抽樣從年齡在[55,65),[65,75)的顧客中選取6人召開一個座談會,現(xiàn)從這6人中選出2人,求這兩人在不同年齡組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若一次函數(shù)f(x)=ax+b有一個零點1,則函數(shù)g(x)=bx2-ax的零點是0,-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知實數(shù)x,y滿足x2+y2=4(y≥0),則m=$\sqrt{3}$x+y的取值范圍是(  )
A.(-2$\sqrt{3}$,4)B.[-2$\sqrt{3}$,4]C.[-4,4]D.[-4,2$\sqrt{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知α∈($\frac{π}{2}$,π),且cosα=-$\frac{24}{25}$,則$\frac{tan(α+\frac{15}{2}π)}{cos(α+7π)}$=(  )
A.$\frac{7}{25}$B.-$\frac{7}{25}$C.$\frac{25}{7}$D.-$\frac{25}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知x,y滿足約束條件$\left\{\begin{array}{l}x+y≤5\\ x-4y≤0\\ x-y+3≥0\end{array}\right.$,則下列目標(biāo)函數(shù)中,在點(4,1)處取得最大值的是( 。
A.$z=\frac{1}{5}x-y$B.z=3x+yC.$z=-\frac{1}{5}x-y$D.z=3x-y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.將下列函數(shù)配方:
(1)f(x)=x2-2x+3
(2)f(x)=3x2+6x-1
( 3 )f(x)=-2x2+3x-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知實數(shù)x,y滿足$\left\{\begin{array}{l}{x+y-4≤0}\\{y-1≥0}\\{x-1≥0}\end{array}\right.$,則z=$\frac{y-1}{x}$的最大值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.對任意x∈R*,不等式lnx≤ax恒成立,則實數(shù)a的取值范圍是(  )
A.(0,$\frac{1}{e}$)B.[$\frac{1}{e}$,+∞)C.(-∞,$\frac{1}{e}$]D.[e,+∞)

查看答案和解析>>

同步練習(xí)冊答案