4.已知二次函數(shù)f(x)滿足f(x+1)-f(x)=2x(x∈R),且f(0)=1.
(1)求f(x)的解析式;
(2)若關(guān)于x的方程f(x)=x+m有區(qū)間(-1,2)上有唯一實(shí)數(shù)根,求實(shí)數(shù)的取值范圍(注:相等的實(shí)數(shù)根算一個(gè)).

分析 (1)根據(jù)二次函數(shù)f(x)滿足f(x+1)-f(x)=2x(x∈R),且f(0)=1,利用待定系數(shù)法,可得f(x)的解析式;
(2)若關(guān)于x的方程f(x)=x+m有區(qū)間(-1,2)上有唯一實(shí)數(shù)根,則函數(shù)h(x)在(-1,2)上有唯一的零點(diǎn),分類討論,可得實(shí)數(shù)m的取值范圍.

解答 解:(1)設(shè)f(x)=ax2+bx+c(a≠0),代入f(x+1)-f(x)=2x,
得2ax+a+b=2x,對(duì)于x∈R恒成立,故$\left\{{\begin{array}{l}{2a=2}\\{a+b=0}\end{array}}\right.$,又由f(0)=1,得c=1,
解得a=1,b=-1,c=1,∴f(x)=x2-x+1.
(2)由方程f(x)=x+m得x2-2x+1-m=0,令h(x)=x2-2x+1-m,x∈(-1,2),
即要求函數(shù)h(x)在(-1,2)上有唯一的零點(diǎn),
①h(-1)=0,則m=4,代入原方程得x=-1或3,不符合題意;
②若h(2)=0,則m=1,代入原方程得x=0或2,滿足題意,故m=1成立;
③若△=0,則m=0,代入原方程得x=1,滿足題意,故m=0成立;
④若m≠4且m≠1且m≠0時(shí),由$\left\{{\begin{array}{l}{h(-1)=4-m>0}\\{h(2)=1-m<0}\end{array}}\right.$得1<m<4.
綜上,實(shí)數(shù)m的取值范圍是{0}∪[1,4).

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是二次函數(shù)的圖象和性質(zhì),函數(shù)的零點(diǎn),函數(shù)的單調(diào)性,是函數(shù)圖象和性質(zhì)的綜合應(yīng)用,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.雙曲線$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{4}$=1的頂點(diǎn)到漸近線的距離為( 。
A.2$\sqrt{3}$B.3C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在棱長(zhǎng)為1的正方體ABCD-A'B'C'D'中,E為棱BB'的中點(diǎn).
(1)三棱錐D'-A'AE的體積為$\frac{1}{6}$;
(2)若點(diǎn)M是棱CD上的中點(diǎn),求證:D'M⊥DE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若復(fù)數(shù)z同時(shí)滿足$z-\overline z=2i$,$\overline z=iz$,則z=-1+i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知數(shù)列{an},對(duì)于任意的正整數(shù)n,${a_n}=\left\{\begin{array}{l}1\;,\;(1≤n≤2016)\\-2•{(\frac{1}{3})^{n-2016}}.\;(n≥2017)\end{array}\right.$,設(shè)Sn表示數(shù)列{an}的前n項(xiàng)和.下列關(guān)于$\underset{lim}{n→∞}$Sn的結(jié)論,正確的是(  )
A.$\lim_{n→+∞}{S_n}=-1$
B.$\lim_{n→+∞}{S_n}=2015$
C.$\lim_{n→+∞}{S_n}=\left\{\begin{array}{l}2016,(1≤n≤2016)\\-1.(n≥2017)\end{array}\right.$(n∈N*)
D.以上結(jié)論都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.有下列三種說法①側(cè)棱垂直于底面的棱柱是直棱柱 ②底面是正多邊形的棱柱是正棱柱、劾庵膫(cè)面都是平行四邊形.其中正確說法的個(gè)數(shù)是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.要得到$y=3cos(2x-\frac{π}{3})$的圖象,只需將y=3cos2x的圖象(  )
A.右移$\frac{π}{3}$B.左移$\frac{π}{3}$C.右移$\frac{π}{6}$D.左移$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若關(guān)于x的不等式4x-logax<0在區(qū)間(0,$\frac{1}{2}$]上恒成立,則實(shí)數(shù)a的取值范圍是($\frac{\sqrt{2}}{2}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.對(duì)于實(shí)數(shù)a,b,定義運(yùn)算“*”:$a*b=\left\{\begin{array}{l}{a^2}-ab\;,\;\;a≤b\\{b^2}-ab\;,\;\;a>b\end{array}\right.$,設(shè)f(x)=2x*(x+1),且關(guān)于x的方程f(x)=m(m∈R)恰有三個(gè)互相等的實(shí)數(shù)根,則m的取值范圍是(-$\frac{1}{4}$,0).

查看答案和解析>>

同步練習(xí)冊(cè)答案