15.某中學(xué)組織了一次高二文科學(xué)生數(shù)學(xué)學(xué)業(yè)水平模擬測(cè)試,學(xué)校從測(cè)試合格的男、女生中各隨機(jī)抽取100人的成績(jī)進(jìn)行統(tǒng)計(jì)分析,分別制成了如圖所示的男生和女生數(shù)學(xué)成績(jī)的頻率分布直方圖.

(Ⅰ)若所得分?jǐn)?shù)大于等于80分認(rèn)定為優(yōu)秀,求男、女生優(yōu)秀人數(shù)各有多少人?
(Ⅱ)在(Ⅰ)中的優(yōu)秀學(xué)生中用分層抽樣的方法抽取5人,從這5人中任意選取2人,求至少有一名男生的概率.

分析 (Ⅰ)根據(jù)頻率分布直方圖求出男、女生優(yōu)秀人數(shù)即可;
(Ⅱ)求出樣本中的男生和女生的人數(shù),求出所有的基本事件以及滿足條件的基本事件的個(gè)數(shù),從而求出滿足條件的概率即可.

解答 解:(Ⅰ)由題意可得,男生優(yōu)秀人數(shù)為100×(0.01+0.02)×10=30人,
女生優(yōu)秀人數(shù)為100×(0.015+0.03)×10=45人.
(Ⅱ)因?yàn)闃颖救萘颗c總體中的個(gè)體數(shù)的比是$\frac{5}{30+45}=\frac{1}{15}$,
所以樣本中包含男生人數(shù)為$30×\frac{1}{15}=2$人,女生人數(shù)為$45×\frac{1}{15}=3$人,
設(shè)兩名男生為A1,A2,三名女生為B1,B2,B3
則從5人中任意選取2人構(gòu)成的所有基本事件為:
{A1,A2},{A1,B1},{A1,B2},{A1,B3},{A2,B1},
{A2,B2},{A2,B3},{B1,B2},{B1,B3},{B2,B3}共10個(gè),
每個(gè)樣本被抽到的機(jī)會(huì)均等,因此這些基本事件的出現(xiàn)是等可能的.
記事件C:“選取的2人中至少有一名男生”,
則事件C包含的基本事件有:
{A1,A2},{A1,B1},{A1,B2},{A1,B3},
{A2,B1},{A2,B2},{A2,B3}共7個(gè),
所以$P(C)=\frac{7}{10}$,即選取的2人中至少有一名男生的概率為$\frac{7}{10}$.

點(diǎn)評(píng) 本題考查了頻率分布問(wèn)題,考查條件概率問(wèn)題,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知在三棱錐P-ABC中,VP-ABC=$\frac{4\sqrt{3}}{3}$,∠APC=$\frac{π}{4}$,∠BPC=$\frac{π}{3}$,PA⊥AC,PB⊥BC,且平面PAC⊥平面PBC,那么三棱錐P-ABC外接球的體積為$\frac{32π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{e}^{x}-1,x>0}\\{\frac{3}{2}x+1,x≤0}\end{array}\right.$若m<n,且f(m)=f(n),則n-m的取值范圍是(  )
A.[ln2,ln$\frac{3}{2}$+$\frac{1}{3}$]B.(ln2,ln$\frac{3}{2}$+$\frac{1}{3}$)C.($\frac{2}{3}$,ln2]D.($\frac{2}{3}$,ln$\frac{3}{2}$+$\frac{1}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若4x=9y=6,則$\frac{1}{x}+\frac{1}{y}$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)隨機(jī)變量X~N(5,σ2),若P(X>10-a)=0.4,則P(X>a)=(  )
A.0.6B.0.4C.0.3D.0.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.甲、乙兩家商場(chǎng)對(duì)同一種商品開展促銷活動(dòng),對(duì)購(gòu)買該商品的顧客兩家商場(chǎng)的獎(jiǎng)勵(lì)方案如下:甲商場(chǎng):顧客轉(zhuǎn)動(dòng)如圖所示圓盤,當(dāng)指針指向陰影部分(圖中兩個(gè)陰影部分均為扇形,且每個(gè)扇形圓心角均為$\frac{π}{4}$,邊界忽略不計(jì))即為中獎(jiǎng).乙商場(chǎng):從裝有2個(gè)白球、2個(gè)藍(lán)球和2個(gè)紅球的盒子中一次性摸出1球(這些球除顏色外完全相同),它是紅球的概率是$\frac{1}{3}$,若從盒子中一次性摸出2球,且摸到的是2個(gè)相同顏色的球,即為中獎(jiǎng).
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)試問(wèn):購(gòu)買該商品的顧客在哪家商場(chǎng)中獎(jiǎng)的可能性大?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.在所有的兩位數(shù)(10~99)中,任取一個(gè)數(shù),則這個(gè)數(shù)能被2或3整除的概率是$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知f(x)是偶函數(shù),它在[0,+∞)上是減函數(shù),若f(lgx)>f(1),則x的取值范圍是( 。
A.$({\frac{1}{10},1})$B.$({\frac{1}{10},10})$C.$({0,\frac{1}{10}})∪({1,+∞})$D.(0,1)∪(10,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.執(zhí)行如圖程序,輸出S的值為(  )
A.$\frac{1007}{2015}$B.$\frac{1008}{2017}$C.$\frac{2016}{2017}$D.$\frac{2015}{4032}$

查看答案和解析>>

同步練習(xí)冊(cè)答案