A. | $(\frac{1}{10},10)$ | B. | $(0,\frac{1}{10})$ | C. | (0,10) | D. | (10,+∞) |
分析 由偶函數(shù)性質(zhì)可化f(lgx)>f(1)為f(|lgx|)>f(1),利用函數(shù)單調(diào)性可去掉“f”.
解答 解:∵f(x)為偶函數(shù),∴f(lgx)=f(|lgx|),
則f(lgx)>f(-1)即為f(|lgx|)>f(1),
又f(x)在[0,+∞)上是減函數(shù),
∴|lgx|<1,即-1<lgx<1,解得$\frac{1}{10}$<x<10,
故選A.
點(diǎn)評(píng) 本題考查函數(shù)的奇偶性、單調(diào)性的綜合運(yùn)用,屬基礎(chǔ)題,解決該題的關(guān)鍵利用函數(shù)的性質(zhì)化抽象不等式為具體不等式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [-2,+∞) | B. | [-3,+∞) | C. | [0,+∞) | D. | (-∞,-2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [0,+∞) | B. | [-$\frac{1}{2}$,+∞) | C. | (-∞,0] | D. | (-∞,-$\frac{1}{2}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {x|0<x≤1} | B. | {x|1≤x<2} | C. | {x|x≥1} | D. | {x|x≤1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 已知f(x)是可導(dǎo)函數(shù),則“f'(x0)=0”是“x0是f(x)的極值點(diǎn)”的充分不必要條件 | |
B. | “若α=$\frac{π}{6}$,則sinα=$\frac{1}{2}$”的否命題是“若α≠$\frac{π}{6}$,則sinα≠$\frac{1}{2}$” | |
C. | 若p:?x0∈R,x02-x0-1>0,則?p:?x∈R,x2-x-1<0 | |
D. | 若p∧q為假命題,則p,q均為假命題 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com