在棱長(zhǎng)為的正方體中,分別為的中點(diǎn).

(1)求直線與平面所 成 角的大;
(2)求二面角的大。
(1)  (2)

試題分析:(1)解法一:建立坐標(biāo)系
平面的一個(gè)法向量為  
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011444846581.png" style="vertical-align:middle;" />,,
可知直線的一個(gè)方向向量為
設(shè)直線與平面成角為所成角為,則
   
解法二:平面,即在平面內(nèi)的射影,
為直線與平面所成角,
中, ,        
(2)解法一:建立坐標(biāo)系如圖.平面的一個(gè)法向量為
設(shè)平面的一個(gè)法向量為,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011445611719.png" style="vertical-align:middle;" />,
所以,令,則
 
由圖知二面角為銳二面角,故其大小為
解法二:過(guò)作平面的垂線,垂足為,即為所求
,過(guò)的垂線設(shè)垂足為,
   在
所以 二面角的大小為. 
點(diǎn)評(píng):解決的關(guān)鍵是利用角的定義作圖來(lái)結(jié)合幾何中的性質(zhì)定理和判定定理來(lái)得到,解三角形得到,或者建立空間直角坐標(biāo)系,運(yùn)用向量法來(lái)求解。屬于中檔題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖是三棱柱的三視圖,正(主)視圖和俯視圖都是矩形,側(cè)(左)視圖為等邊三角形,的中點(diǎn).
          
(1)求證:∥平面
(2)設(shè)垂直于,且,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,正方形ABCD所在平面與圓O所在平面相交于CD,線段CD為圓O的弦,AE垂直于圓O所在平面,垂足E是圓O上異于C、D的點(diǎn),AE=3,正方形ABCD的邊長(zhǎng)為

(1)求證:平面ABCD丄平面ADE;
(2)求四面體BADE的體積;
(3)試判斷直線OB是否與平面CDE垂直,并請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,四面體ABCD中,AB⊥BD、AC⊥CD且AD =3.BD=CD=2.

(1)求證:AD⊥BC;
(2)求二面角B—AC—D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,三棱錐中,底面,,,點(diǎn)的中點(diǎn).

(1)求證:側(cè)面平面;
(2)若異面直線所成的角為,且,
求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(文科)(本小題滿分12分)長(zhǎng)方體中,,是底面對(duì)角線的交點(diǎn).

(Ⅰ) 求證:平面;
(Ⅱ) 求證:平面
(Ⅲ) 求三棱錐的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,已知AC ⊥平面CDE, BD ∥AC , 為等邊三角形,F(xiàn)為ED邊上的中點(diǎn),且

(Ⅰ)求證:CF∥面ABE;
(Ⅱ)求證:面ABE ⊥平面BDE;
(Ⅲ)求該幾何體ABECD的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四棱錐中,底面是邊長(zhǎng)為2的正方形,,且,中點(diǎn).

(Ⅰ)求證:平面;    
(Ⅱ)求二面角的大小;
(Ⅲ)在線段上是否存在點(diǎn),使得點(diǎn)到平
的距離為?若存在,確定點(diǎn)的位置;
若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

對(duì)于兩條不相交的空間直線,必定存在平面,使得 (     )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案