【題目】有下列命題:(1)終邊相同的角的同名三角比的值相等;(2)終邊不同的角的同名三角比的值不同;(3)若,則是第一或第二象限角;(4中,若,則;其中正確命題的個(gè)數(shù)是(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

【答案】B

【解析】

1),根據(jù)終邊相同的角的同名三角函數(shù)值相等,判斷命題正確;(2),根據(jù)終邊不同的角的同名三角函數(shù)值也可能相等,判斷命題錯(cuò)誤;(3),當(dāng)時(shí),是第一或第二象限角,或?yàn)榻K邊在軸的正半軸上,判斷命題錯(cuò)誤;(4),根據(jù)大角對(duì)大邊,利用正弦定理即可判斷結(jié)論正確.

對(duì)于(1),終邊相同的角的同名三角函數(shù)值相等,所以比值相等,(1)正確;

對(duì)于(2),終邊不同的角的同名三角函數(shù)值也可能相等,如

所以比值也可能相同,(2)錯(cuò)誤;

對(duì)于(3),若,則是第一或第二象限角,或終邊在軸的正半軸上,(3)錯(cuò)誤;

對(duì)于(4),中,若,則,

由正弦定理得,

,(4)正確;

綜上,其中正確命題的序號(hào)為(1)和(4),共2個(gè).

故選:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解今年某校高三畢業(yè)班準(zhǔn)備報(bào)考飛行員學(xué)生的體重情況,將所得的數(shù)據(jù)整理后,畫(huà)出了頻率分布直方圖(如圖),已知圖中從左到右的前3個(gè)小組的頻率之比為1:2:3,其中第2小組的頻數(shù)為15.

(1)求該校報(bào)考飛行員的總?cè)藬?shù);

(2)以這所學(xué)校的樣本數(shù)據(jù)來(lái)估計(jì)全省的總體數(shù)據(jù),若從全省報(bào)考飛行員的同學(xué)中(人數(shù)很多)任選三人,設(shè)表示體重超過(guò)65公斤的學(xué)生人數(shù),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】吸煙有害健康,遠(yuǎn)離煙草,珍惜生命。據(jù)統(tǒng)計(jì)一小時(shí)內(nèi)吸煙5支誘發(fā)腦血管病的概率為0.02,一小時(shí)內(nèi)吸煙10支誘發(fā)腦血管病的概率為0.16.已知某公司職員在某一小時(shí)內(nèi)吸煙5支未誘發(fā)腦血管病,則他在這一小時(shí)內(nèi)還能繼吸煙5支不誘發(fā)腦血管病的概率為( )

A. B. C. D. 不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)與直線(xiàn) 相交于、兩點(diǎn),點(diǎn)為坐標(biāo)原點(diǎn) .

(1)當(dāng)k=1時(shí),求的值;

(2)若的面積等于,求直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)存在極值且這些極值的和不小于,的取值范圍為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列關(guān)于回歸分析的說(shuō)法中錯(cuò)誤的是( )

A. 回歸直線(xiàn)一定過(guò)樣本中心

B. 殘差圖中殘差點(diǎn)比較均勻地落在水平的帶狀區(qū)域中,說(shuō)明選用的模型比較合適

C. 兩個(gè)模型中殘差平方和越小的模型擬合的效果越好

D. 甲、乙兩個(gè)模型的分別約為0.98和0.80,則模型乙的擬合效果更好

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

1)求函數(shù)圖像在處的切線(xiàn)方程;

2)證明:

3)若不等式對(duì)于任意的均成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在多邊形中, , , , 是線(xiàn)段上的一點(diǎn),且,若將沿折起,得到幾何體.

(1)試問(wèn):直線(xiàn)與平面是否有公共點(diǎn)?并說(shuō)明理由;

(2)若,且平面平面,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校舉行環(huán)保知識(shí)大獎(jiǎng)賽,比賽分初賽和決賽兩部分,初賽采用選手選一題答一題的方式進(jìn)行,每位選手最多有5次選題答題的機(jī)會(huì),選手累積答對(duì)3題或打錯(cuò)3題即終止其初賽的比賽:答對(duì)3題者直接進(jìn)入初賽,打錯(cuò)3題者則被淘汰.已知選手甲答對(duì)每個(gè)問(wèn)題的概率相同,并且相互之間沒(méi)有影響,答題連續(xù)兩次答錯(cuò)的概率為.

1)求選手甲可進(jìn)入決賽的概率.

2)設(shè)選手甲在初賽中答題的個(gè)數(shù)為,試求的分布列,并求的數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案