精英家教網 > 高中數學 > 題目詳情
在等差數列{an}中,a1=1,a6=2a3+1,對任意的n,設Sn=a1-a2+a3-a4+…+(-1)n-1an,則滿足S2k+1>35的最小正整數K的取值等于( 。
A.16B.17C.18D.19
∵等差數列{an}中,a1=1,a6=2a3+1,
a1=1
a1+5d=2(a1+2d)+1

解得a1=1,d=2,
∴an=2n-1,
∴Sn=1-3+5-7+…+(-1)n-1•(2n-1),
S2k+1=S2k+(-1)2k+1-1a2k+1=-2k+(-1)2ka2k+1
=-2k+[2•(2k+1)-1]
=-2k+4k+1=2k+1>35,
∴2k>34,
∴k>17,
∴最小正整數K值為18,
故選C.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在等差數列{an}中,a1=-2010,其前n項的和為Sn.若
S2010
2010
-
S2008
2008
=2,則S2010=(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

在等差數列{an}中,a1+3a8+a15=60,則2a9-a10的值為
12
12

查看答案和解析>>

科目:高中數學 來源: 題型:

已知在等差數列{an}中,d>0,a2008、a2009是方程x2-3x-5=0的兩個根,那么使得前n項和Sn為負值的最大的n的值是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

在等差數列{an}中,已知a1=2,a2+a3=13,則a4+a5+a6等于=
42
42

查看答案和解析>>

科目:高中數學 來源: 題型:

在等差數列{an}中,若S4=1,S8=4,則a17+a18+a19+a20的值=
9
9

查看答案和解析>>

同步練習冊答案