13.已知拋物線:y=4x2,則拋物線的通徑長(zhǎng)為$\frac{1}{4}$.

分析 將拋物線方程轉(zhuǎn)化成標(biāo)準(zhǔn)方程,求得焦點(diǎn)坐標(biāo),代入拋物線方程,即可求得拋物線的通徑長(zhǎng).

解答 解:由拋物線:y=4x2,標(biāo)準(zhǔn)方程為:x2=$\frac{1}{4}$y,焦點(diǎn)坐標(biāo)為(0,$\frac{1}{16}$),設(shè)A(x,y),
當(dāng)y=$\frac{1}{16}$,則x=$\frac{1}{8}$,
拋物線的通徑長(zhǎng)丨AB丨=2x=$\frac{1}{4}$,
故答案為:$\frac{1}{4}$.

點(diǎn)評(píng) 本題考查拋物線的標(biāo)準(zhǔn)方程及性質(zhì),考查弦長(zhǎng)公式,考查數(shù)形結(jié)合思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積是$\frac{10}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)f(x)=$\left\{\begin{array}{l}{a{x}^{2}+x-1(x>2)}\\{ax-1(x≤2)}\end{array}\right.$是R上的減函數(shù),則實(shí)數(shù)a的取值a范圍( 。
A.[-$\frac{1}{2}$,0)B.(-∞,$-\frac{1}{4}$]C.[-1,-$\frac{1}{4}$]D.(-∞,-1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知f(x)是定義在R上的偶函數(shù),且x≤0時(shí),f(x)=log${\;}_{\frac{1}{2}}$(-x+1).
(1)求f(x)的解析式;
(2)若f(a-1)<-1,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)f(x)=a2x2+1,且f(1)=5則a=±2,函數(shù)f(x)在R上的單調(diào)遞減區(qū)間為(-∞,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且a+b+c=16.
(1)若a=4,b=5,求cosC的值;
(2)若sinA+sinB=3sinC,且△ABC的面積S=18sinC,求a和b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列函數(shù)中,為偶函數(shù)的是( 。
A.y=x+1B.y=$\frac{1}{x}$C.y=x2D.y=x5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)函數(shù)f(x)是定義在R上的奇函數(shù),且f(-2)=-3,則f(2)+f(0)=( 。
A.3B.-3C.2D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.北京市為了緩解交通壓力,計(jì)劃在某路段實(shí)施“交通限行”,為調(diào)查公眾對(duì)該路段“交通限行”的態(tài)度,某機(jī)構(gòu)從經(jīng)過該路段的人員中隨機(jī)抽查了80人進(jìn)行調(diào)查,將調(diào)查情況進(jìn)行整理,制成表:
年齡(歲)[15,30)[30,45)[45,60)[60,75)
人數(shù)24261614
贊成人數(shù)1214x3
(1)若經(jīng)過該路段的人員對(duì)“交通限行”的贊成率為0.40,求x的值;
(2)在(1)的條件下,若從年齡在[45,60),[60,75)內(nèi)的兩組贊成“交通限行”的人中在隨機(jī)選取2人進(jìn)行進(jìn)一步的采訪,求選中的2人中至少有1人來自[60,75)內(nèi)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案