已知橢圓的一個(gè)頂點(diǎn)為,焦點(diǎn)在軸上,若右焦點(diǎn)到直線的距離為3.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線與橢圓相交于不同的兩點(diǎn)、,當(dāng)時(shí),求的取值范圍.
(1);(2).

試題分析:本題考查橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì)、交點(diǎn)問(wèn)題、直線的斜率、韋達(dá)定理等基礎(chǔ)知識(shí),考查數(shù)形結(jié)合思想,考查運(yùn)算求解能力、綜合分析和解決問(wèn)題的能力.第一問(wèn),根據(jù)條件,設(shè)橢圓的方程,寫(xiě)出,得焦點(diǎn),代入點(diǎn)到直線的距離公式,得,得到橢圓的方程;第二問(wèn),直線方程與曲線方程聯(lián)立,消,得關(guān)于的一元二次方程,據(jù)條件有兩個(gè)不同實(shí)根,所以,解得,利用韋達(dá)定理,求得中點(diǎn)的橫縱坐標(biāo),求,由,得,整理得,最后解方程組得.
試題解析:(1)依題意可設(shè)橢圓方程為,          .2分
則右焦點(diǎn)的坐標(biāo)為,                .3分
由題意得,解得,
故所求橢圓的標(biāo)準(zhǔn)方程為.                .5分
(2)設(shè)、、,其中為弦的中點(diǎn),
,得        .7分
因?yàn)橹本與橢圓相交于不同的兩點(diǎn),所以
   ①,                                .8分
,所以
從而 ,                            .9分
所以,                       .10分
,所以,
因而,即  ②,          .11分
把②式代入①式得,解得,           .12分
由②式得,解得,                .13分
綜上所述,求得的取值范圍為.             .14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C的中心在原點(diǎn),焦點(diǎn)F在軸上,離心率,點(diǎn)在橢圓C上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若斜率為的直線交橢圓、兩點(diǎn),且、、成等差數(shù)列,點(diǎn)M(1,1),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C:的四個(gè)頂點(diǎn)恰好是一邊長(zhǎng)為2,一內(nèi)角為的菱形的四個(gè)頂點(diǎn).
(I)求橢圓C的方程;
(II)若直線y =kx交橢圓C于A,B兩點(diǎn),在直線l:x+y-3=0上存在點(diǎn)P,使得 ΔPAB為等邊三角形,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若橢圓的弦被點(diǎn)平分,則此弦所在直線的斜率為          

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知兩點(diǎn)A(–2,0),B(0,2),點(diǎn)P是橢圓=1上任意一點(diǎn),則點(diǎn)P到直線AB距離的最大值是______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知B、C是兩個(gè)定點(diǎn),∣BC∣=6,且△ABC的周長(zhǎng)等于16,則頂點(diǎn)A的軌跡方程為                .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知對(duì)k∈R,直線y-kx-1=0與橢圓恒有公共點(diǎn),則實(shí)數(shù)m的取值范圍是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)已知圓,圓,動(dòng)圓與圓外切并且與圓內(nèi)切,圓心的軌跡為曲線。
(Ⅰ)求的方程;
(Ⅱ)是與圓,圓都相切的一條直線,與曲線交于,兩點(diǎn),當(dāng)圓的半徑最長(zhǎng)是,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知為橢圓的兩個(gè)焦點(diǎn),P為橢圓上,則此橢圓離心率的取值范圍是                                               (    )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案