(2012•黑龍江)平面α截球O的球面所得圓的半徑為1,球心O到平面α的距離為
2
,則此球的體積為(  )
分析:利用平面α截球O的球面所得圓的半徑為1,球心O到平面α的距離為
2
,求出球的半徑,然后求解球的體積.
解答:解:因?yàn)槠矫姒两厍騉的球面所得圓的半徑為1,球心O到平面α的距離為
2
,
所以球的半徑為:
(
2
)
2
+1
=
3

所以球的體積為:
3
(
3
)
3
=4
3
π.
故選B.
點(diǎn)評(píng):本題考查球的體積的求法,考查空間想象能力、計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•黑龍江)已知ω>0,函數(shù)f(x)=sin(ωx+
π
4
)
(
π
2
,π)
上單調(diào)遞減.則ω的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•黑龍江)已知三棱錐S-ABC的所有頂點(diǎn)都在球O的球面上,△ABC是邊長(zhǎng)為1的正三角形,SC為球O的直徑,且SC=2,則此棱錐的體積為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•黑龍江)復(fù)數(shù)z=
-3+i
2+i
的共軛復(fù)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•黑龍江)已知向量
a
,
b
夾角為45°,且|
a
|=1,|2
a
-
b
|=
10
,則|
b
|
=
3
2
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•黑龍江)已知集合A={x|x2-x-2<0},B={x|-1<x<1},則( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案