精英家教網 > 高中數學 > 題目詳情

【題目】近年空氣質量逐步惡化,霧霾天氣現(xiàn)象增多,大氣污染危害加重.大氣污染可引起心悸、呼吸困難等心肺疾病.為了解某市心肺疾病是否與性別有關,在某醫(yī)院隨機對心肺疾病入院的人進行問卷調查,得到了如下的列聯(lián)表:

患心肺疾病

不患心肺疾病

合計

A

合計

B

(1)根據已知條件求出上面的列聯(lián)表中的A和B;用分層抽樣的方法在患心肺疾病的人群中抽人,其中男性抽多少人?

(2)為了研究心肺疾病是否與性別有關,請計算出統(tǒng)計量,并說明是否有的把握認為心肺疾病與性別有關?

下面的臨界值表供參考:

參考公式: ,其中.

【答案】(1)4人;(2)見解析.

【解析】分析:(1)根據已知列聯(lián)表計算可得,分層抽樣是按比例抽取樣本,也易得抽取樣本的數量;

(2)根據所給公式計算即得.

詳解:(1)A=20,B=30由列聯(lián)表知,患心肺疾病的有30人,要抽取6人,用分層抽樣的方法,則男性要抽取

2)由列聯(lián)表中的數據,代入公式中,算出,查臨界值表知:有把握認為心肺疾病與性別有關.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數,x∈(b﹣3,2b)是奇函數,

(1)求a,b的值;

(2)若f(x)是區(qū)間(b﹣3,2b)上的減函數且f(m﹣1)+f(2m+1)>0,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設p:f(x)=ex+lnx+2x2+mx+1在(0,+∞)上單調遞增,q:m≥﹣5,則p是q的條件.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,底面△ABC是邊長為2的等邊三角形,D為AB中點.

(1)求證:BC1∥平面A1CD;
(2)若四邊形BCC1B1是正方形,且A1D= ,求直線A1D與平面CBB1C1所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四邊形ABCD內接于⊙O,過點A作⊙O的切錢EP交CB 的延長線于P,己知∠PAB=25°.

(1)若BC是⊙O的直徑,求∠D的大;
(2)若∠DAE=25°,求證:DA2=DCBP.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某工廠為提高生產效率,開展技術創(chuàng)新活動,提出了完成某項生產任務的兩種新的生產方式.為比較兩種生產方式的效率,選取40名工人,將他們隨機分成兩組,每組20人,第一組工人用第一種生產方式,第二組工人用第二種生產方式.根據工人完成生產任務的工作時間(單位:min)繪制了如下莖葉圖:

(1)根據莖葉圖判斷哪種生產方式的效率更高?并說明理由;

(2)求40名工人完成生產任務所需時間的中位數,并將完成生產任務所需時間超過和不超過的工人數填入下面的列聯(lián)表:

超過

不超過

第一種生產方式

第二種生產方式

(3)根據(2)中的列聯(lián)表,能否有99%的把握認為兩種生產方式的效率有差異?

附:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】有甲乙兩個班級進行數學考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計成績后,得到如下的列聯(lián)表.

優(yōu)秀

非優(yōu)秀

總計

甲班

10

乙班

30

總計

105

已知在全部105人中隨機抽取1人為優(yōu)秀的概率為.

(1)請完成上面的列聯(lián)表;(把列聯(lián)表自己畫到答題卡上)

(2)根據列聯(lián)表的數據,若按95%的可靠性要求,能否認為成績與班級有關系”?

參考公式:

P(K2k0)

0.10

0.05

0.025

0.010

k0

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓C:(x﹣1)2+y2=r2(r>0)與直線l:y=x+3,且直線l有唯一的一個點P,使得過P點作圓C的兩條切線互相垂直,則r=;設EF是直線l上的一條線段,若對于圓C上的任意一點Q,∠EQF≥ ,則|EF|的最小值=

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐S—ABCD的底面是正方形,側棱SA⊥底面ABCD,

過A作AE垂直SB交SB于E點,作AH垂直SD交SD于H點,平面AEH交SC于K點,且AB=1,SA=2.

(1)證明E、H在以AK為直徑的圓上,且當點P是SA上任一點時,試求的最小值;

(2)求平面AEKH與平面ABCD所成的銳二面角的余弦值.

查看答案和解析>>

同步練習冊答案