12.在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且BC邊上的高為$\frac{{\sqrt{3}}}{6}a$,則$\frac{c}$+$\frac{c}$取得最大值時(shí),角A的值為$\frac{π}{3}$.

分析 利用三角形的面積計(jì)算公式可得$\frac{1}{2}$×$\frac{\sqrt{3}}{6}$a2=$\frac{1}{2}$bcsinA即a2=2$\sqrt{3}$bcsinA,利用余弦定理及已知可得$\frac{c}$+$\frac{c}$=4sin(A+$\frac{π}{6}$)≤4,從而可解得A的值.

解答 解:∵$\frac{1}{2}$×$\frac{\sqrt{3}}{6}$a2=$\frac{1}{2}$bcsinA,
∴a2=2$\sqrt{3}$bcsinA.
∵cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$,
∴b2+c2=a2+2bccosA=2$\sqrt{3}$bcsinA+2bccosA
∴$\frac{c}$+$\frac{c}$=2$\sqrt{3}$sinA+2cosA=4sin(A+$\frac{π}{6}$)≤4,
∴$\frac{c}$+$\frac{c}$的最大值是4時(shí)有A+$\frac{π}{6}$=2kπ+$\frac{π}{2}$,k∈Z
∴可解得:A=2kπ+$\frac{π}{3}$,k∈Z
∵0<A<π
∴A=$\frac{π}{3}$.
故答案為:$\frac{π}{3}$

點(diǎn)評(píng) 本題考查了三角形的面積計(jì)算公式、余弦定理、兩角和差的正弦計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知函數(shù)$f(x)=\frac{{2-m•{2^x}}}{2^x}$,函數(shù)$g(x)={log_a}({x^2}+x+2)$(a>0且a≠1)在$[{-\frac{1}{3}\;,\;1}]$上的最大值為2,若對(duì)任意的x1∈[-1,2],存在x2∈[0,3],使得f(x1)≥g(x2),則實(shí)數(shù)m的取值范圍是( 。
A.$({-∞\;,\;-\frac{2}{3}}]$B.$[{\frac{2}{3}\;,\;+∞})$C.$({-∞\;,\;-\frac{1}{2}}]$D.$({-∞\;,\;\frac{1}{2}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.復(fù)數(shù)$z=\frac{2i}{2-i}$(i為虛數(shù)單位)所對(duì)應(yīng)的點(diǎn)位于復(fù)平面內(nèi)(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.設(shè)4a=5b=m,且$\frac{1}{a}$+$\frac{2}$=1.
(1)求a,b的值(用m表示);
(2)求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.如圖表示一位騎自行車(chē)者與一位騎摩托車(chē)者在相距80km的兩城鎮(zhèn)間旅行的函數(shù)圖象,由圖中信息,判斷以下說(shuō)法正確的序號(hào)為( 。
①騎自行車(chē)者比騎摩托車(chē)者早出發(fā)3小時(shí),晚到1小時(shí);
②騎自行車(chē)者是變速運(yùn)動(dòng),騎摩托車(chē)者是勻速運(yùn)動(dòng);
③騎摩托車(chē)者出發(fā)后1.5小時(shí)后追上了騎自行車(chē)者.
A.①③B.①②C.②③D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知數(shù)列{an}的首項(xiàng)a1=1,數(shù)列{bn}是公比為16的等比數(shù)列,且${b_n}={2^{a_n}}$.
(1)求數(shù)列{an}的通項(xiàng)公式an及前n項(xiàng)和Sn
(2)設(shè)${c_n}=\frac{S_n}{n}•{2^{n-1}}$,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.函數(shù)f(x)=$\frac{1}{3}$ax3+ax2+x+2存在單調(diào)遞減區(qū)間,則a的取值范圍是(-∞,0)∪(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知集合A={x|y=$\sqrt{\frac{6}{x+1}-1}$,集合B={x|y=lg(-x2+2x+3)}.求A∩(∁RB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知函數(shù)f(x)=cos(ωx+φ)(ω>0,|φ|≤$\frac{π}{2}$),當(dāng)x=-$\frac{π}{4}$時(shí)函數(shù)f(x)能取得最小值,當(dāng)x=$\frac{π}{4}$時(shí)函數(shù)y=f(x)能取得最大值,且f(x)在區(qū)間($\frac{π}{18}$,$\frac{5π}{36}$)上單調(diào).則當(dāng)ω取最大值時(shí)φ的值為-$\frac{π}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案