二面角α-l-β的平面角為120°,在面α內,AB⊥l于B,AB=2在平面β內,CD⊥l于D,CD=3,BD=1,M是棱l上的一個動點,則AM+CM的最小值為( 。
分析:要求出AM+CM的最小值,可將空間問題轉化成平面問題,將二面角展開成平面中在BD上找一點使AM+CM即可,而當A、M、C在一條直線時AM+CM的最小值,從而求出對角線的長即可.
解答:解:將二面角α-l-β平攤開來,即為圖形
當A、M、C在一條直線時AM+CM的最小值,最小值即為對角線AC
而AE=5,EC=1
故AC=
26

故選C.
點評:本題主要考查了平面的翻折問題,同時考查了將空間問題轉化成平面問題的能力,對數(shù)學思維的要求比較高,有一定的探索性.綜合性強,難度大,易出錯.是高考的重點.解題時要認真審題,仔細解答.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:湖北省荊州中學2008高考復習立體幾何基礎題題庫一(有詳細答案)人教版 人教版 題型:013

如下圖,二面角α-l-β的平向角為120°,Al,Bl,ACβBDβ,ACl,BDl.若ABACBD=1,則CD長為

[  ]

A.

B.

C.2

D.

查看答案和解析>>

同步練習冊答案