(2012•奉賢區(qū)一模)函數(shù)y=lg(x2+1),x≥0的反函數(shù)是
f-1(x)=
10x-1
(x≥0)
f-1(x)=
10x-1
(x≥0)
分析:從條件中函數(shù)式y(tǒng)=lg(x2+1),x≥0中反解出x,再將x,y互換即得,最后注意要寫(xiě)出反函數(shù)的定義域.
解答:解:∵y=lg(x2+1),x≥0,
∴x=
10y-1
(y≥0)

∴函數(shù)y=lg(x2+1)(x≥0)的反函數(shù)為f-1(x)=
10x-1
(x≥0)

故答案為f-1(x)=
10x-1
(x≥0)
點(diǎn)評(píng):求反函數(shù),一般應(yīng)分以下步驟:(1)由已知解析式y(tǒng)=f(x)反求出x=Ф(y);(2)交換x=Ф(y)中x、y的位置;(3)求出反函數(shù)的定義域(一般可通過(guò)求原函數(shù)的值域的方法求反函數(shù)的定義域).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•奉賢區(qū)一模)復(fù)數(shù)z=
2-i
2+i
(i為虛數(shù)單位)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)所在象限為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•奉賢區(qū)一模)不等式
xx-1
>2
的解集是
(1,2)
(1,2)
  (用區(qū)間表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•奉賢區(qū)一模)函數(shù)f(x)=
x+
1
2
,x∈[0,
1
2
)
2(1-x),x∈[
1
2
,1]
,定義f(x)的第k階階梯函數(shù)fk(x)=f(x-k)-
k
2
,x∈(k,k+1]
,其中k∈N*,f(x)的各階梯函數(shù)圖象的最高點(diǎn)Pk(ak,bk).
(1)直接寫(xiě)出不等式f(x)≤x的解;
(2)求證:所有的點(diǎn)Pk在某條直線L上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•奉賢區(qū)一模)設(shè)雙曲線
x2
a2
-
y2
9
=1(a>0)
的漸近線方程為3x±2y=0,則正數(shù)a的值為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•奉賢區(qū)一模)正數(shù)列{an}的前n項(xiàng)和Sn滿足:rSn=anan+1-1,a1=a>0,常數(shù)r∈N.
(1)求證:an+2-an是一個(gè)定值;
(2)若數(shù)列{an}是一個(gè)周期數(shù)列,求該數(shù)列的周期;
(3)若數(shù)列{an}是一個(gè)有理數(shù)等差數(shù)列,求Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案