【題目】已知函數f(x)=Asin(ωx+φ)(A,ω,φ均為正的常數)的最小正周期為π,當x= 時,函數f(x)取得最小值,則下列結論正確的是( )
A.f(2)<f(﹣2)<f(0)
B.f(0)<f(2)<f(﹣2)
C.f(﹣2)<f(0)<f(2)
D.f(2)<f(0)<f(﹣2)
科目:高中數學 來源: 題型:
【題目】已知如圖:四邊形ABCD是矩形,BC⊥平面ABE,且AE=2 ,EB=BC=2,點F為CE上一點,且BF⊥平面ACE.
(1)求證:AE∥平面BFD;
(2)求三棱錐A﹣DBE的體積;
(3)求二面角D﹣BE﹣A的大。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某條公共汽車線路收支差額與乘客量的函數關系如圖所示(收支差額車票收入支出費用),由于目前本條線路虧損,公司有關人員提出了兩條建議:建議(Ⅰ)不改變車票價格,減少支出費用;建議(Ⅱ)不改變支出費用,提高車票價格,下面給出的四個圖形中,實線和虛線分別表示目前和建議后的函數關系,則
A. ①反映了建議(Ⅱ),③反映了建議(Ⅰ)
B. ①反映了建議(Ⅰ),③反映了建議(Ⅱ)
C. ②反映了建議(Ⅰ),④反映了建議(Ⅱ)
D. ④反映了建議(Ⅰ),②反映了建議(Ⅱ)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將邊長為2正方形ABCD沿對角線BD折成直二面角A﹣BD﹣C,有如下四個判斷:
①AC⊥BD
②AB與平面BCD所成60°角
③△ABC是等邊三角形
④若A、B、C、D四點在同一個球面上,則該球的表面積為8π
其中正確判斷的序號是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知向量 =( sin ,1), =(cos ,cos2 ),f(x)= .
(1)求函數f(x)的解析式及其單調遞增區(qū)間;
(2)將f(x)的圖象向右平移 個單位長度得到g(x)的圖象,若g(x)﹣k≤0在區(qū)間[0, ]上恒成立,求實數k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線l過點P(1,0,﹣1),平行于向量=(2,1,1),平面α過直線l與點M(1,2,3),則平面α的法向量不可能是( )
A.(1,﹣4,2)
B.(,-1,)
C.(-,1,-)
D.(0,﹣1,1)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com