【答案】
分析:(1)由已知得,橢圓C的左頂點(diǎn)為A(-4,0),上頂點(diǎn)為D(0,2),由此能求出橢圓C的方程.
(2)線AP的斜率k顯然存在,且k>0,故可設(shè)直線AP的方程為y=k(x+4),從而M(5,9k).由題設(shè)條件可以求出
,求得|MN|,再由均值不等式進(jìn)行求解.
(3)由(2)知,當(dāng)線段MN的長(zhǎng)度取最小值時(shí),
,設(shè)與BP平行的直線l':3x+2y+t=0
聯(lián)立
得10x
2+6tx+t
2-16=0,利用△=36t
2-40(t
2-16)=0得
最后即可解決問(wèn)題.
解答:解:(1)由已知得橢圓C的左頂點(diǎn)為A(-4,0),上頂點(diǎn)為D(0,2),
∴a=4,b=2,
故橢圓C的方程為
(2)直線AP的斜率k顯然存在,且k>0,故可設(shè)直線AP的方程為y=k(x+4),從而M(5,9k),設(shè)P(x
,y
),則
,∴直線BP的方程為:
,
得
∴
當(dāng)且僅當(dāng)
即
時(shí)等號(hào)成立
∴
時(shí),線段MN的長(zhǎng)度取最小值3.
(3)由(2)知,當(dāng)線段MN的長(zhǎng)度取最小值時(shí),
,此時(shí)直線BP的方程為
設(shè)與BP平行的直線l':3x+2y+t=0
聯(lián)立
得10x
2+6tx+t
2-16=0
由△=36t
2-40(t
2-16)=0得
當(dāng)
時(shí),BP與l'的距離為
,此時(shí)S
△BPQ=
當(dāng)
時(shí),BP與l'的距離為
,此時(shí)S
△BPQ=
∴當(dāng)
時(shí),這樣的Q點(diǎn)有4個(gè)
當(dāng)
時(shí),這樣的Q點(diǎn)有3個(gè)
當(dāng)
時(shí),這樣的Q點(diǎn)有2個(gè)
當(dāng)
時(shí),這樣的Q點(diǎn)有1個(gè)
當(dāng)
時(shí),這樣的Q點(diǎn)不存在.
點(diǎn)評(píng):本題考查橢圓與直線的位置關(guān)系,(3)解答關(guān)系是利用方程的思想轉(zhuǎn)化成根的判別等于0的問(wèn)題,另外解題時(shí)要注意公式的靈活運(yùn)用.