4.設(shè)函數(shù)$f(x)=\left\{\begin{array}{l}{2^{-x}},x≤0\\{x^{\frac{1}{2}}},x>0\end{array}\right.$,則f(-2)+f(1)=( 。
A.1B.2C.4D.5

分析 由函數(shù)性質(zhì)先分別求出f(-2),f(1),由此能求出f(-2)+f(1)的值.

解答 解:∵函數(shù)$f(x)=\left\{\begin{array}{l}{2^{-x}},x≤0\\{x^{\frac{1}{2}}},x>0\end{array}\right.$,
∴f(-2)=2-(-2)=4,
f(1)=${1}^{\frac{1}{2}}$=1,
∴f(-2)+f(1)=4+1=5.
故選:D.

點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知全集U={1,2,3,4,5},集合A={3,4},B={1,2},則(∁UA)∩B等于(  )
A.{1,2}B.[1,3}C.{1,2,5}D.{1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知集合A={1,3,5},B={1,m},A∩B={1,m},則m等于(  )
A.1 或 3B.3 或 5C.1 或 5D.1 或 3 或5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.在空間直角坐標(biāo)系Oxyz中,z軸上的點(diǎn)M到點(diǎn)A(1,0,2)與點(diǎn)B(1,-3,1)的距離相等,則點(diǎn)M的坐標(biāo)是(  )
A.(0,0,-3)B.(0,0,3)C.(0,0,$\sqrt{10}$)D.(0,0,-$\sqrt{10}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,在三棱錐V-ABC中,平面VAB⊥平面ABC,VA=VB=4,AC=BC=2且AC⊥BC,O,M分別為AB,VA的中點(diǎn).
(1)求證:VB∥平面MOC;
(2)求證:平面MOC⊥平面VAB;
(3)求三棱錐V-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若直線(a-1)x-2y+1=0與直線x-ay+1=0平行,則a=( 。
A.-1或2B.-1C.2D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖,長(zhǎng)方體ABCD-A1B1C1D1中,AB=12,BC=10,AA1=8,過(guò)點(diǎn)A1、D1的平面α與棱AB和CD分別交于點(diǎn)E、F,四邊形A1EFD1為正方形.
(1)在圖中請(qǐng)畫出這個(gè)正方形(注意虛實(shí)線,不必寫作法),并求AE的長(zhǎng);
(2)問(wèn)平面α右側(cè)部分是什么幾何體,并求其體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知向量$\overrightarrow{a}$=(1,m),$\overrightarrow$=(2,1).若m實(shí)數(shù),且($\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow$,則m=(  )
A.-7B.-6C.7D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知集合A={x|x2-2x+2a-a2≤0},B={x|sin(πx-$\frac{π}{3}}$)+$\sqrt{3}$cos(πx-$\frac{π}{3}}$)=0}.
(1)若2∈A,求a的取值范圍;
(2)若A∩B恰有3個(gè)元素,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案