分析 (1)求出函數(shù)的導數(shù),解關于導函數(shù)的不等式,求出函數(shù)的單調區(qū)間即可;
(2)根據(jù)函數(shù)的單調性求出函數(shù)的最值.
解答 解:(1)f(x)的定義域[-1,4],
f'(x)=4x3-24x2+36x=4x(x2-6x+9)=4x(x-3)2,
令f'(x)=0得x=0,x=3列表得:
x | -1 | (-1,0) | 0 | (0,3) | 3 | (3,4) | 4 |
y' | - | 0 | + | 0 | + | ||
y | 10 | ↓ | 極小值-1 | ↑ | 無極值 | ↑ | 31 |
點評 本題考查了函數(shù)的單調性、最值問題,考查導數(shù)的應用,是一道中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=|sinx| | B. | y=|sin2x| | C. | y=|cosx| | D. | y=tanx |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{5π}{6}$ | B. | $\frac{5π}{18}$ | C. | $\frac{π}{6}$ | D. | $\frac{π}{18}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2$\sqrt{3}$ | B. | 3$\sqrt{3}$ | C. | $\frac{4\sqrt{3}}{3}$ | D. | 4$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com