【題目】如圖,在四棱錐中,平面,,是線段的中點.

(1)求證:平面;

(2)求二面角的余弦值.

【答案】(1)證明見解析;(2).

【解析】

試題分析:建立空間直角坐標系,給出相應點坐標,得平面PAB的法向量為,,即可得∥平面

求出平面的一個法向量,平面的法向量,利用向量的夾角公式,即可求出二面角的余弦值;

解析:(1)證明:以B為坐標原點,BA所在的直線為x軸,BC所在的直線為y軸,過點B且與平面ABC垂直的直線為z軸,建立空間直角坐標系如圖所示.

B(0,0,0),C(0,,0),P(1,0,2),D,A(1,0,0),E,∴,,

顯然平面PAB的法向量為,平面,∴平面.

(2)(1),,設平面的法向量為,,取,則,∴為平面的一個法向量.同理:平面的法向量為

,故二面角的余弦值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的各項均為正數(shù),滿足a1=1,ak+1﹣ak=ai . (i≤k,k=1,2,3,…,n﹣1)
(1)求證: ;
(2)若{an}是等比數(shù)列,求數(shù)列{an}的通項公式;
(3)設數(shù)列{an}的前n項和為Sn , 求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設拋物線C:x2=2py(p>0)的焦點為F,準線為l,A∈C,已知以F為圓心,F(xiàn)A為半徑的圓F交l于B,D兩點;
(1)若∠BFD=90°,△ABD的面積為 ,求p的值及圓F的方程;
(2)若A,B,F(xiàn)三點在同一直線m上,直線n與m平行,且n與C只有一個公共點,求坐標原點到m,n距離的比值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設a<1,集合A={x∈R|x>0},B={x∈R|2x2﹣3(1+a)x+6a>0},D=A∩B.
(1)求集合D(用區(qū)間表示);
(2)求函數(shù)f(x)=2x3﹣3(1+a)x2+6ax在D內(nèi)的極值點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某同學在一次研究性學習中發(fā)現(xiàn),以下五個式子的值都等于同一個常數(shù).
1)sin213°+cos217°﹣sin13°cos17°
2)sin215°+cos215°﹣sin15°cos15°
3)sin218°+cos212°﹣sin18°cos12°
4)sin2(﹣18°)+cos248°﹣sin2(﹣18°)cos48°
5)sin2(﹣25°)+cos255°﹣sin2(﹣25°)cos55°
(Ⅰ)試從上述五個式子中選擇一個,求出這個常數(shù);
(Ⅱ)根據(jù)(Ⅰ)的計算結(jié)果,將該同學的發(fā)現(xiàn)推廣為三角恒等式,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4﹣4:坐標系與參數(shù)方程
在平面直角坐標系中,以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系.已知直線l上兩點M,N的極坐標分別為(2,0),( ),圓C的參數(shù)方程 (θ為參數(shù)).
(Ⅰ)設P為線段MN的中點,求直線OP的平面直角坐標方程;
(Ⅱ)判斷直線l與圓C的位置關系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】三國魏人劉徽,自撰《海島算經(jīng)》,專論測高望遠.其中有一題今有望海島,立兩表齊,高三丈,前後相去千步,令後表與前表相直。從前表卻行一百二十三步,人目著地取望島峰,與表末參合。從後表卻行百二十七步,人目著地取望島峰,亦與表末參合。問島高及去表各幾何?翻譯如下:要測量海島上一座山峰的高度,立兩根高三丈的標桿前后兩竿相距,使后標桿桿腳與前標桿桿腳與山峰腳在同一直線上,從前標桿桿腳退行步到,人眼著地觀測到島峰,、、、三點共線,從后標桿桿腳退行步到,人眼著地觀測到島峰,、三點也共線,山峰的高度__________步.(古制尺,步)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工藝品廠要設計一個如圖1所示的工藝品,現(xiàn)有某種型號的長方形材料如圖2所示,其周長為4m,這種材料沿其對角線折疊后就出現(xiàn)圖1的情況.如圖,ABCD(AB>AD)為長方形的材料,沿AC折疊后AB'DC于點P,設ADP的面積為S2 , 折疊后重合部分ACP的面積為S1 .

Ⅰ)設AB=xm,用x表示圖中DP的長度,并寫出x的取值范圍;

Ⅱ)求面積S2最大時,應怎樣設計材料的長和寬?

Ⅲ)求面積(S1+2S2)最大時,應怎樣設計材料的長和寬?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|x+ |﹣|x﹣ |;
(1)作出函數(shù)f(x)的圖象;
(2)根據(jù)(1)所得圖象,填寫下面的表格:

性質(zhì)

定義域

值域

單調(diào)性

奇偶性

零點

f(x)


(3)關于x的方程f2(x)+m|f(x)|+n=0(m,n∈R)恰有6個不同的實數(shù)解,求n的取值范圍.

查看答案和解析>>

同步練習冊答案