13.將直角坐標(1,1)轉(zhuǎn)化為極坐標為( 。
A.$({1,\frac{π}{4}})$B.$({\sqrt{2},\frac{π}{4}})$C.$({\sqrt{2},\frac{3π}{4}})$D.$({\sqrt{2},-\frac{π}{4}})$

分析 由題意,ρ=$\sqrt{2}$,tanθ=1,θ=$\frac{π}{4}$,即可得出結(jié)論.

解答 解:由題意,ρ=$\sqrt{2}$,tanθ=1,θ=$\frac{π}{4}$,
∴直角坐標(1,1)轉(zhuǎn)化為極坐標為($\sqrt{2}$,$\frac{π}{4}$),
故選B.

點評 本題考查直角坐標(1,1)轉(zhuǎn)化為極坐標,考查學(xué)生的計算能力,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.為了了解某地區(qū)高一新學(xué)生的身體發(fā)育情況,抽查了該地區(qū)100名年齡為17.5歲-18歲的男生體重(kg),得到頻率分布直方圖如圖:根據(jù)上圖可得這100名學(xué)生中體重大于等于58.5小于等于64.5的學(xué)生人數(shù)是( 。
A.20B.22C.30D.34

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=2x+a•2-x,其中常數(shù)a≠0.
(1)當(dāng)a=1時,f(x)的最小值;
(2)當(dāng)a=256時,是否存在實數(shù)k∈(1,2],使得不等式f(k-cosx)≥f(k2-cos2x)對任意x∈R恒成立?若存在,求出所有滿足條件的k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若一個長方體的高為80cm,長比寬多10cm,則這個長方體的體積y(cm3)與長方體的寬x(cm)之間的表達式是y=80x(x+10),x∈(0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)A,B為兩個不相等的集合,條件p:x∈(A∪B),條件q:x∈(A∩B),則p是q的( 。
A.充分不必要條件B.充要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.直線l:(k+1)x-ky-1=0(k∈R)與圓C:x2+(y-1)2=1的位置關(guān)系是( 。
A.相交B.相切C.相離D.相交或相切

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.己知平行四邊形的周長為6,則其對角線長的平方和的最小值是9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在直角坐標xOy中,${C_1}:\left\{{\begin{array}{l}{x=t}\\{y=t+5}\end{array}}\right.(t$為參數(shù)),在以坐標原點為極點,x軸正半軸為極軸的極坐標系中,曲線${C_2}:{ρ^2}+2{ρ^2}{sin^2}θ-3=0$.
(1)求C1的普通方程與C2的參數(shù)方程;
(2)根據(jù)(1)中你得到的方程,求曲線C2上任意一點P到C1的最短距離,并確定取得最短距離時P點的直角坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知集合A={1,2,3},B={2,3},則( 。
A.A=BB.B∈AC.A?BD.B?A

查看答案和解析>>

同步練習(xí)冊答案