精英家教網 > 高中數學 > 題目詳情
3.約束條件為$\left\{\begin{array}{l}{x+y-5≤0}\\{x-y-k≤0}\\{x≥0,y≥0}\end{array}\right.$,目標函數Z=2x-y,則Z的最大值是( 。
A.-4B.4C.-5D.5

分析 由約束條件作出可行域,化目標函數為直線方程的斜截式,數形結合得到最優(yōu)解,聯立方程組求得最優(yōu)解的坐標,代入目標函數得答案.

解答 解:由約束條件$\left\{\begin{array}{l}{x+y-5≤0}\\{x-y-1≤0}\\{x≥0,y≥0}\end{array}\right.$作出可行域如圖,

聯立$\left\{\begin{array}{l}{x+y-5=0}\\{x-y-1=0}\end{array}\right.$,解得A(3,2),
化目標函數Z=2x-y為y=2x-Z,由圖可知,當直線y=2x-Z過A時,直線在y軸上的截距最小,z有最大值為2×3-2=4.
故選:B.

點評 本題考查簡單的線性規(guī)劃,考查了數形結合的解題思想方法,是中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

13.F1、F2為雙曲線C:$\frac{x^2}{9}-\frac{y^2}{4}=1$的左、右焦點,點M在雙曲線上且∠F1MF2=60°,則${S_{△{F_1}M{F_2}}}$=4$\sqrt{3}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

14.已知直線l:y=k(x-n)與拋物線y2=4x交于A(x1,y1),B(x2,y2)(x1x2≠0)兩點.
(Ⅰ)若直線l過拋物線的焦點F,求x1x2的值;
(Ⅱ)若x1x2+y1y2=0,求n的值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

11.如圖,“天宮一號”運行的軌跡是如圖的兩個類同心圓,小圓的半徑為2km,大圓的半徑為4km,衛(wèi)星P在圓環(huán)內無規(guī)則地自由運動,運行過程中,則點P與點O的距離小于3km的概率為( 。
A.$\frac{1}{12}$B.$\frac{5}{12}$C.$\frac{1}{3}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

18.設p:0<x<5,q:x2-4x-21<0,那么p是q的( 。
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

8.如圖,在四棱錐P-ABCD中,AD∥BC,AB⊥AD,AB⊥PA,BC=2AB=2AD=4BE,平面PAB⊥平面ABCD.
(1)求證:直線ED⊥平面PAC;
(2)若直線PE與平面PAC所成的角的正弦值為$\frac{\sqrt{5}}{5}$,求二面角A-PC-D的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

15.化簡 $\overrightarrow{AB}-\overrightarrow{CD}+\overrightarrow{BD}-\overrightarrow{AC}$的結果是(  )
A.$\overrightarrow 0$B.$\overrightarrow{AC}$C.$\overrightarrow{BD}$D.$\overrightarrow{DA}$

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

12.函數f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的圖象關于y軸對稱,該函數的部分圖象如圖所示,△PMN是以MN為斜邊的等腰直角三角形,且$|MN|•|MP|=2\sqrt{2}$,則f(1)的值為0.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

10.設銳角△ABC的三個內角為A,B,C,其中角B的大小為$\frac{π}{6}$,則cosA+sinC的取值范圍為($\frac{\sqrt{3}}{2}$,$\frac{3}{2}$).

查看答案和解析>>

同步練習冊答案