化簡
AC
+
CD
+
DA
=( 。
A、
AD
B、
DA
C、
DC
D、
0
考點(diǎn):向量的加法及其幾何意義
專題:平面向量及應(yīng)用
分析:根據(jù)向量的合成法則,進(jìn)行化簡即可.
解答: 解:化簡,得
AC
+
CD
+
DA
=
AD
+
DA

=
AD
-
AD

=
0

故選:D.
點(diǎn)評(píng):本題考查了平面向量的線性運(yùn)算問題,解題時(shí)應(yīng)根據(jù)向量的線性運(yùn)算法則,進(jìn)行計(jì)算,即可得出正確的答案.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知兩條直線l1:(2+m)x+4y=5-3m,l2:2x+(5-m)y=8互相垂直,則m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以拋物線y2=4x的焦點(diǎn)為頂點(diǎn),頂點(diǎn)為中心,離心率為2的雙曲線方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
log
1
2
x , x>0
f(x+3) , x≤0
,則f(f(4))=( 。
A、-2B、0C、1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asinωx(A>0,ω>0)的最小正周期為2,f(
1
3
)=
3
.若將y=f(x)的圖象向左平移
1
3
個(gè)單位后得到函數(shù)y=g(x)的圖象,則(  )
A、g(x)=sin(πx-
π
3
B、g(x)=sin(πx+
π
3
C、g(x)=2sin(πx-
π
3
D、g(x)=2sin(πx+
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
0
xdx=2(a>0),則a的值為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

己知定義在R上的函數(shù)y=f(x)滿足f(x)=f(2-x),且當(dāng)x≠1時(shí),其導(dǎo)函數(shù)f′(x)滿足f′(x)>xf′(x),若a∈(1,2),則( 。
A、f(log2a)<f(2a)<f(2)
B、f(2a)<f(2)<f(log2a)
C、f(log2a)<f(2)<f(2a
D、f(2)<f(log2a)<f(2a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=4x-cosx,則f(x)在[0,2π]上的零點(diǎn)個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}和{bn}滿足:a1=λ,an+1=
2
3
an+n-4,bn=(-1)n(an-3n+21),其中λ為實(shí)數(shù),n為正整數(shù).
(1)對(duì)任意實(shí)數(shù)λ,求證:a1,a2,a3不成等比數(shù)列;
(2)試判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結(jié)論;
(3)設(shè)Sn為數(shù)列{bn}的前n項(xiàng)和.是否存在實(shí)數(shù)λ,使得對(duì)任意正整數(shù)n,都有Sn>-12?若存在,求λ的取值范圍;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案