分析 (1)分類討論,利用奇偶函數(shù)定義判斷.
(2)求解導(dǎo)數(shù)f′(x)=2ax$+\frac{4}{{X}^{2}}$=$\frac{2a{x}^{3}+4}{{x}^{2}}$,討論得出當f′(x)≥0時,x≤$\root{3}{-\frac{2}{a}}$,當f′(x)≤0時,x≥$\root{3}{-\frac{2}{a}}$,根據(jù)a∈(-2,-1),判斷$-\frac{2}{a}$∈(1,2),得出導(dǎo)數(shù)的符號即可.
解答 解:(1)函數(shù)f(x)=ax2-$\frac{4}{x}$,其中a為常數(shù),
①當a=0時,f(x)=-$\frac{4}{x}$是奇函數(shù),
∵f(-x)=-$\frac{4}{-x}$=$\frac{4}{x}$=-f(-x)
∴當a=0時,f(x)=-$\frac{4}{x}$是奇函數(shù),
②∵當a≠0時,f(x)=-$\frac{4}{x}$是非奇非偶函數(shù),
f(-x)≠-f(-x),f(-x)≠f(-x)
∴當a≠0時,f(x)=-$\frac{4}{x}$是非奇非偶函數(shù),
(2)∵函數(shù)f(x)在($\frac{1}{2}$,1)上的單調(diào)性,
∴f′(x)=2ax$+\frac{4}{{X}^{2}}$=$\frac{2a{x}^{3}+4}{{x}^{2}}$,
當f′(x)≥0時,x≤$\root{3}{-\frac{2}{a}}$,當f′(x)≤0時,x≥$\root{3}{-\frac{2}{a}}$,
∵a∈(-2,-1),∴$-\frac{2}{a}$∈(1,2),
∴$\root{3}{-\frac{2}{a}}$>1,
在($\frac{1}{2}$,1)上f′(x)>0,
∴函數(shù)f(x)在($\frac{1}{2}$,1)上的單調(diào)遞增函數(shù).
點評 本題綜合考查了函數(shù)性質(zhì),導(dǎo)數(shù)在解決函數(shù)綜合問題中的運用,屬于中檔題,關(guān)鍵單調(diào)與導(dǎo)數(shù)的關(guān)系.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=-x3,x∈R | B. | y=x2,x∈R | C. | y=x,x∈R | D. | $y={({\frac{1}{2}})^x}$,x∈R |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 6 | C. | 8 | D. | 14 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①③④ | B. | ②④ | C. | ②③④ | D. | ①②③ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com