已知函數(shù)f(x)=ex(x+a)-x2-bx,曲線y=f(x)在點(diǎn)(0,f(0))處切線方程為2x+y-1=0.
(Ⅰ)求a、b的值;
(Ⅱ)求f(x)的單調(diào)區(qū)間,并求f(x)的極大值.
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,利用導(dǎo)數(shù)研究函數(shù)的極值
專(zhuān)題:綜合題,導(dǎo)數(shù)的綜合應(yīng)用
分析:(Ⅰ)求導(dǎo)函數(shù),利用導(dǎo)數(shù)的幾何意義及曲線y=f(x)在點(diǎn)(0,f(0))處切線方程為2x+y-1=0,建立方程,即可求得a,b的值;
(Ⅱ)利用導(dǎo)數(shù)的正負(fù),可得f(x)的單調(diào)性,從而可求f(x)的極大值.
解答: 解:(Ⅰ)∵f(x)=ex(x+a)-x2-bx,
∴f′(x)=ex(x+a+1)-2x-b,
∵曲線y=f(x)在點(diǎn)(0,f(0))處切線方程為2x+y-1=0,
∴f(0)=1,f′(0)=-2
∴a=1,b=4;
(Ⅱ)由(Ⅰ)知,f(x)=ex(x+1)-x2-4x,f′(x)=(x+2)(ex-2),
令f′(x)=0,得x=ln2或x=-2
∴x∈(-∞,-2)∪(ln2,+∞)時(shí),f′(x)>0;x∈(-2,ln2)時(shí),f′(x)<0
∴f(x)的單調(diào)增區(qū)間是(-∞,-2),(ln2,+∞),單調(diào)減區(qū)間是(-2,ln2)
當(dāng)x=-2時(shí),函數(shù)f(x)取得極大值,極大值為f(-2)=4-e-2
點(diǎn)評(píng):本題考查導(dǎo)數(shù)的幾何意義,考查函數(shù)的單調(diào)性與極值,考查學(xué)生的計(jì)算能力,確定函數(shù)的解析式是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p1:存在x0∈R,使得x02+x0+1<0成立;p2:對(duì)任意的x∈[1,2],x2-1≥0.以下命題為真命題的是( 。
A、¬p1∧¬p2
B、p1∨¬p2
C、¬p1∧p2
D、p1∧p2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
2x+1(-2<x≤0)
-2(0<x<3).

(1)求函數(shù)的定義域;
(2)求f(2),f(0),f(-1);
(3)作出函數(shù)圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線y=3-x2(x>0)上與定點(diǎn)P(0,2)距離最近的點(diǎn)的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某中學(xué)從6名品學(xué)兼優(yōu)的同學(xué)中選出4名去進(jìn)行為期三天的環(huán)保知識(shí)宣傳活動(dòng),每人一天,要求星期天有2人參加,星期五、星期六各有1人參加,則不同的選派方案的種數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用0,1,2,3四個(gè)數(shù)字組成沒(méi)有重復(fù)數(shù)字的四位奇數(shù)有( 。﹤(gè).
A、4B、8C、24D、64

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A(1,0),曲線C:y=eax恒過(guò)點(diǎn)B,若P是曲線C上的動(dòng)點(diǎn),且
AB
AP
的最小值為2,則a=( 。
A、-2B、-1C、2D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題“若兩條直線沒(méi)有公共點(diǎn),則這兩條直線是異面直線”的否命題是(  )
A、若兩條直線有公共點(diǎn),則這兩條直線不是異面直線
B、若兩條直線沒(méi)有公共點(diǎn),則這兩條直線不是異面直線
C、若兩條直線是異面直線,則這兩條直線沒(méi)有公共點(diǎn)
D、若兩條直線不是異面直線,則這兩條直線有公共點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
|x|
x
+x
的圖象是( 。
A、
B、
C、
D、

查看答案和解析>>

同步練習(xí)冊(cè)答案