袋子里有大小相同但標(biāo)有不同號(hào)碼的3個(gè)紅球和4個(gè)黑球,從袋子里隨機(jī)取出4個(gè)球.
⑴求取出的紅球數(shù)?的概率分布列;
⑵若取到每個(gè)紅球得2分,取到每個(gè)黑球得1分,求得分不超過(guò)5分的概率.

(1)

ξ
0
1
2
3
P




(2)

解析試題分析:解:⑴∵的可能取值為0,1,2,3,且的分布列是一個(gè)超幾何分布列.
的分布列為

ξ
0
1
2
3
P




(2)∵得分,

∴得分不超過(guò)5分的概率為
考點(diǎn):分布列和概率的求解
點(diǎn)評(píng):解決的關(guān)鍵是根據(jù)超幾何分布列來(lái)得到隨機(jī)變量的分布列的求解,以及對(duì)應(yīng)的概率值。屬于基礎(chǔ)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知甲盒內(nèi)有大小相同的1個(gè)紅球和3個(gè)黑球,乙盒內(nèi)有大小相同的2個(gè)紅球和4個(gè)黑球.現(xiàn)從甲、乙兩個(gè)盒內(nèi)各任取2個(gè)球.
(1)求取出的4個(gè)球均為黑球的概率;
(2)求取出的4個(gè)球中恰有1個(gè)紅球的概率;
(3)設(shè)為取出的4個(gè)球中紅球的個(gè)數(shù),求的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

向面積為內(nèi)任投一點(diǎn),求的面積小于的概率?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

一袋中有6個(gè)黑球,4個(gè)白球.
(1)依次取出3個(gè)球,不放回,已知第一次取出的是白球,求第三次取到黑球的概率;
(2)有放回地依次取出3球,已知第一次取的是白球,求第三次取到黑球的概率;
(3)有放回地依次取出3球,求取到白球個(gè)數(shù)X的分布列、期望和方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

一個(gè)袋中裝有大小相同的黑球和白球共9個(gè),從中任取3個(gè)球,記隨機(jī)變量為取出3球中白球的個(gè)數(shù),已知
(Ⅰ)求袋中白球的個(gè)數(shù);
(Ⅱ)求隨機(jī)變量的分布列及其數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

甲設(shè)計(jì)了一個(gè)摸獎(jiǎng)游戲,在一個(gè)口袋中裝有同樣大小的10個(gè)球,分別標(biāo)有數(shù)字0,1,2,……9這十個(gè)數(shù)字,摸獎(jiǎng)?wù)呓?元錢可參加一回摸球活動(dòng),一回摸球活動(dòng)的規(guī)則是:摸獎(jiǎng)?wù)咴诿蚯跋入S機(jī)確定(預(yù)報(bào))3個(gè)數(shù)字,然后開(kāi)始在袋中不放回地摸3次球,每次摸一個(gè),摸得3個(gè)球的數(shù)字與預(yù)先所報(bào)數(shù)字均不相同的獎(jiǎng)1元,有1個(gè)數(shù)字相同的獎(jiǎng)2元,2個(gè)數(shù)字相同的獎(jiǎng)10元,3個(gè)數(shù)字相同的獎(jiǎng)50元,設(shè)ξ為摸獎(jiǎng)?wù)咭换厮锚?jiǎng)金數(shù),求ξ的分布列和摸獎(jiǎng)人獲利的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如下圖,用A、B、C三類不同的元件連接兩個(gè)系統(tǒng)N1,N2,當(dāng)元件A、B、C都正常工作時(shí)系統(tǒng)N1正常工作,當(dāng)元件A正常工作且元件B、C至少有一個(gè)正常工作時(shí)系統(tǒng)N2正常工作,已知元件A、B、C正常工作的概率分別為0.80,0.90,0.90,分別求系統(tǒng)N1,N2正常工作的概率p1,p2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分12分)因金融危機(jī),某公司的出口額下降,為此有關(guān)專家提出兩種促進(jìn)出口的方案,每種方案都需要分兩年實(shí)施.若實(shí)施方案一,預(yù)計(jì)第一年可以使出口額恢復(fù)到危機(jī)前的1.0倍、0.9倍、0.8倍的概率分別為0.3、0.3、0.4;第二年可以使出口額為第一年的1.25倍、1.0倍的概率分別是0.5、0.5.若實(shí)施方案二,預(yù)計(jì)第一年可以使出口額恢復(fù)到危機(jī)前的1.2倍、l.0倍、0.8倍的概率分別為0.2、0.3、0.5;第二年可以使出口額為第一年的1.2倍、1.0倍的概率分別是0.4、0.6.實(shí)施每種方案第一年與第二年相互獨(dú)立.令ζ=1,2)表示方案實(shí)施兩年后出口額達(dá)到危機(jī)前的倍數(shù)。
(Ⅰ)寫出、的分布列;
(Ⅱ)實(shí)施哪種方案,兩年后出口額超過(guò)危機(jī)前出口額的概率更大?
(Ⅲ)不管哪種方案,如果實(shí)施兩年后出口額達(dá)不到、恰好達(dá)到、超過(guò)危機(jī)前出口額,預(yù)計(jì)利潤(rùn)分別為10萬(wàn)元、15萬(wàn)元、20萬(wàn)元,問(wèn)實(shí)施哪種方案的平均利潤(rùn)更大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

盒中有6只燈泡,其中有2只是次品,4只是正品.從中任取2只,試求下列事件的概率.
(Ⅰ)取到的2只都是次品;    
(Ⅱ)取到的2只中恰有一只次品.

查看答案和解析>>

同步練習(xí)冊(cè)答案