6.(1)畫(huà)出函數(shù)y=|x-2|的圖象,寫(xiě)出函數(shù)的增區(qū)間和減區(qū)間;
(2)已知A={x|-2<x<-1或x>1},B={x|a≤x<b},A∪B={x|x>-2},A∩B={x|1<x<3},求實(shí)數(shù)a,b的值.

分析 (1)由題意畫(huà)出函數(shù)圖象,利用圖象寫(xiě)出單調(diào)區(qū)間;
(2)根據(jù)兩個(gè)集合的運(yùn)算a,b的范圍或者具體數(shù)值即可.

解答 解:
(1)
函數(shù)的減區(qū)間為(-∞,2],增區(qū)間為(2,+∞).
(2)因?yàn)锳∩B={x|1<x<3},
所以b=3,-1≤a≤1.
因?yàn)锳∪B={x|x>-2},
所以-2<a≤-1.
所以a=-1.
綜上可知a=-1,b=3.

點(diǎn)評(píng) 本題(1)考查了函數(shù)的圖象以及單調(diào)性;(2)考查集合的運(yùn)算.比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知xn=a0+a1(x-1)+a2(x-1)2+…+an(x-1)n,若5a1=2a2,則a0+a1+a2+a3+…+an=64.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.曲線y=tanx在點(diǎn)($\frac{π}{4}$,1)處的切線的斜率為( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知數(shù)列{an}滿足Sn=$\frac{{n}^{2}+n}{2}$,等比數(shù)列{bn}滿足b2=4,b4=16.
(1)求數(shù)列{an}、數(shù)列{bn}的通項(xiàng)公式;
(2)求數(shù)列{an•bn}的前n項(xiàng)和Tn;
(3)在(2)的條件下,當(dāng)n≥2時(shí)$\frac{n-1}{{T}_{n}-2}$+2n-5≥k恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{a}{x}$+$\frac{x}{a}$-(a-$\frac{1}{a}$)lnx(a>0).
(1)求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(2)證明:當(dāng)a∈[$\frac{1}{2}$,2]時(shí),函數(shù)f(x)沒(méi)有零點(diǎn)(提示:ln2≈0.69,ln3≈1.1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.?dāng)?shù)列{an}是以d(d≠0)為公差的等差數(shù)列,a1=2,且a2,a4,a8成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若bn=$\frac{2}{{(n+1){a_n}}}$(n∈N*),求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.圖中曲線是對(duì)數(shù)函數(shù)y=logax的圖象,已知a取$\sqrt{3}$,$\frac{4}{3}$,$\frac{3}{5}$,$\frac{1}{10}$四個(gè)值,則相應(yīng)于C1,C2,C3,C4的a值依次為(  )
A.$\frac{4}{3}$,$\sqrt{3}$,$\frac{3}{5}$,$\frac{1}{10}$B.$\sqrt{3}$,$\frac{4}{3}$,$\frac{1}{10}$,$\frac{3}{5}$C.$\sqrt{3}$,$\frac{4}{3}$,$\frac{3}{5}$,$\frac{1}{10}$D.$\frac{4}{3}$,$\sqrt{3}$,$\frac{1}{10}$,$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,四邊形ABCD是正方形,DE⊥平面ABCD,AF∥DE,AF=$\frac{1}{2}AD=\frac{1}{3}$ED=1.
(Ⅰ)求二面角E-AC-D的正切值;
(Ⅱ)設(shè)點(diǎn)M是線段BD上一個(gè)動(dòng)點(diǎn),試確定點(diǎn)M的位置,使得AM∥平面BEF,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.在等差數(shù)列{an}中,an=3n-31,記bn=|an|,則數(shù)列{bn}的前30項(xiàng)和755.

查看答案和解析>>

同步練習(xí)冊(cè)答案