7.如圖,已知四邊形ABCD是平行四邊形,點P是平面ABCD外一點,M是PC的中點,在DM上取一點G,過G和AP作平面交平面BDM于GH.求證:
(1)AP∥平面BDM;
(2)AP∥GH.

分析 (1)連AC,交BD于O,連接OM,證明OM∥AP,即可證明AP∥平面BDM;
(2)由線面平行的性質(zhì)定理得AP∥GH.

解答 證明:(1)如圖連AC,交BD于O,連接OM,
因為四邊形ABCD是平行四邊形,
所以O(shè)是AC的中點.
又M是PC的中點,
所以O(shè)M∥AP…(2分)
又OM?平面BDM,AP?平面BDM,
所以AP∥平面BDM…(4分)
(2)因為經(jīng)過AP與點G的平面交平面BDM于GH,
所以由線面平行的性質(zhì)定理得AP∥GH…(8分)

點評 本題考查線面平行的判定與性質(zhì),考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=1+x-$\frac{{x}^{2}}{2}$+$\frac{{x}^{3}}{3}$-$\frac{{x}^{4}}{4}$+…+$\frac{{x}^{2017}}{2017}$,g(x)=1-x+$\frac{{x}^{2}}{2}$-$\frac{{x}^{3}}{3}$+$\frac{{x}^{4}}{4}$-…-$\frac{{x}^{2017}}{2017}$,設(shè)函數(shù)F(x)=f(x+4)•g(x-5),且函數(shù)F(x)的零點均在區(qū)間[a,b](a<b,a,b∈Z)內(nèi),則b-a的最小值為( 。
A.9B.10C.11D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.等差數(shù)列{an}的前n項和為Sn,若a2+a6+a10=6,則S11等于( 。
A.24B.21C.22D.23

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在R上的函數(shù)f(x)滿足:f(x)•f(x+2)=13,若f(3)=4,則f(2017)=( 。
A.4B.$\frac{13}{4}$C.26D.52

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.某球的體積與表面積的數(shù)值相等,則球的半徑是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若loga3<1,則a取值范圍是( 。
A.a>3B.1<a<3C.0<a<1D.a>3或0<a<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知f(x)在定義域(0,+∞)是單調(diào)函數(shù),當x∈(0,+∞)時,都有f[f(x)-$\frac{1}{x}$]=2,則f($\frac{1}{5}$)的值是6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)f(x)=$\frac{3{x}^{2}}{\sqrt{1-x}}$+lg(3x+1)的定義域為( 。
A.[-$\frac{1}{3}$,1)B.(-$\frac{1}{3}$,1)C.(-$\frac{1}{3}$,+∞)D.(-∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知圓A:x2+y2=1,圓B:(x-3)2+(y+4)2=10,P是平面內(nèi)一動點,過P作圓A、圓B的切線,切點分別為D、E,若PE=PD,則P到坐標原點距離的最小值為$\frac{8}{5}$.

查看答案和解析>>

同步練習(xí)冊答案