【題目】設,函數(shù),.
(1)當時,求函數(shù)的單調(diào)區(qū)間;
(2)求函數(shù)的極值;
(3)若函數(shù)在區(qū)間上有唯一零點,試求的值.
【答案】(1)的減區(qū)間為,增區(qū)間為;(2)有極大值,無極小值;(3).
【解析】
(1)求出,解得或,則可探究當時,當時, 的變化,從而求出單調(diào)區(qū)間;
(2)求出,令,結合導數(shù)探究 在 的單調(diào)性,結合,可探究出隨的變化情況,從而可求極值;
(3)令,可得在只有一個解,借助第二問可知,從而可求出的值.
解:(1)當時,.易知的定義域為,
令,解得或,
當時,,則 遞減;當時,,則 遞增,
因此,的減區(qū)間為,增區(qū)間為.
(2)的定義域為,則,令,
則,故在單調(diào)遞減,又知,
當時,,即;當時,,即
因此在單調(diào)遞增,在單調(diào)遞減.
即當 時, 有極大值,無極小值.
(3)令,整理得:在只有一個解,
即的圖像與的圖像在只有一個交點,由(2)知,
在單調(diào)遞增,在單調(diào)遞減,且有極大值,
所以,,解得.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面是邊長為2的正方形,且,若點E,F分別為AB和CD的中點.
(1)求證:平面平面;
(2)若二面角的平面角的余弦值為,求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校需要從甲、乙兩名學生中選一人參加數(shù)學競賽,抽取了近期兩人次數(shù)學考試的成績,統(tǒng)計結果如下表:
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
甲的成績(分) | |||||
乙的成績(分) |
(1)若從甲、乙兩人中選出一人參加數(shù)學競賽,你認為選誰合適?請說明理由.
(2)若數(shù)學競賽分初賽和復賽,在初賽中有兩種答題方案:
方案一:每人從道備選題中任意抽出道,若答對,則可參加復賽,否則被淘汰.
方案二:每人從道備選題中任意抽出道,若至少答對其中道,則可參加復賽,否則被潤汰.
已知學生甲、乙都只會道備選題中的道,那么你推薦的選手選擇哪種答題方條進人復賽的可能性更大?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),在以坐標原點為極點,軸的正半軸為極軸的極坐標系中,直線的極坐標方程為.
(1)若直線與曲線至多只有一個公共點,求實數(shù)的取值范圍;
(2)若直線與曲線相交于,兩點,且,的中點為,求點的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列滿足:對任意的,若,則,且,設集合,集合中元素最小值記為,集合中元素最大值記為.
(1)對于數(shù)列:,寫出集合及;
(2)求證:不可能為18;
(3)求的最大值以及的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,過點P(1,2)的直線l的參數(shù)方程為為參數(shù)).以原點O為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為.
(1)求直線l的普通方程和曲線C的直角坐標方程;
(2)若直線l與曲線C相交于M,N兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(為常數(shù),是自然對數(shù)的底數(shù)),曲線在點處的切線與軸垂直.
(1)求的單調(diào)區(qū)間;
(2)設,對任意,證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年末,武漢出現(xiàn)新型冠狀病毒肺炎()疫情,并快速席卷我國其他地區(qū),傳播速度很快.因這種病毒是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株,所以目前沒有特異治療方法,防控難度很大.武漢市出現(xiàn)疫情最早,感染人員最多,防控壓力最大,武漢市從2月7日起舉全市之力入戶上門排查確診的新冠肺炎患者、疑似的新冠肺炎患者、無法明確排除新冠肺炎的發(fā)熱患者和與確診患者的密切接觸者等“四類”人員,強化網(wǎng)格化管理,不落一戶、不漏一人.在排查期間,一戶6口之家被確認為“與確診患者的密切接觸者”,這種情況下醫(yī)護人員要對其家庭成員隨機地逐一進行“核糖核酸”檢測,若出現(xiàn)陽性,則該家庭為“感染高危戶”.設該家庭每個成員檢測呈陽性的概率均為()且相互獨立,該家庭至少檢測了5個人才能確定為“感染高危戶”的概率為,當時,最大,則( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com