(本小題滿分13分)
已知數(shù)列的相鄰兩項是關于的方程的兩根,且
(1)求證:數(shù)列是等比數(shù)列;
(2)求數(shù)列的前項和;
(3)設函數(shù)對任意的都成立,求的取值范圍。
(1)∵an+an+1=2n

(2);(3)t<1。

試題分析:(1)∵an+an+1=2n
 (3分)
(2)Sn=a1+a2+……+an
(6分)
(3)bn=an·an+1

∴當n為奇數(shù)時
     (9分)
當n為偶數(shù)時
(12分)
綜上所述,t的取值范圍為t<1                     (13分)
點評:若已知遞推公式為的形式求通項公式常用累加法。
注:①若是關于n的一次函數(shù),累加后可轉化為等差數(shù)列求和;
②若是關于n的二次函數(shù),累加后可分組求和;
是關于n的指數(shù)函數(shù),累加后可轉化為等比數(shù)列求和;
是關于n的分式函數(shù),累加后可裂項求和。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

的內角的對邊分別為 若成等比數(shù)列,且,則(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

數(shù)列前n項和。(1)求的值及數(shù)列的通項公式。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設數(shù)列是首相大于零的等比數(shù)列,則“”是“數(shù)列是遞增數(shù)列”的_____條件.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

等比數(shù)列滿足,,數(shù)列滿足
(1)求的通項公式;(5分)
(2)數(shù)列滿足為數(shù)列的前項和.求;(5分)
(3)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有 的值;若不存在,請說明理由.(6分)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知

(1)求數(shù)列{}的通項公式
(2)數(shù)列{}的首項b1=1,前n項和為Tn,且,求數(shù)列{}
的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)等比數(shù)列中,.
(1)求數(shù)列的通項公式;
(2)若分別為等差數(shù)列的第4項和第16項,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若四個正數(shù)成等差數(shù)列,的等差中項,的等比中項,則的大小關系是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在數(shù)列中,如果存在常數(shù),使得對于任意正整數(shù)均成立,那么就稱數(shù)列為周期數(shù)列,其中叫做數(shù)列的周期. 已知數(shù)列滿足,若,當數(shù)列的周期為時,則數(shù)列的前2012項的和為 (    )
A.1339 +aB.1341+aC.671 +aD.672+a

查看答案和解析>>

同步練習冊答案