若球O的體積為36πcm3,則它的半徑等于
 
cm.
考點(diǎn):球的體積和表面積
專題:
分析:直接利用球的體積公式,求出球的半徑即可.
解答: 解:∵球O的體積為36πcm3,
3
r3=36π
,
∴r=3cm.
故答案為:3.
點(diǎn)評(píng):本題考查球的體積的求法,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知B、C是以原點(diǎn)O為圓心,半徑為1的圓與x軸的交點(diǎn),點(diǎn)A在劣弧
PQ
(包含端點(diǎn))上運(yùn)動(dòng),其中∠POx=60°,OP⊥OQ,作AH⊥BC于H.若記
AH
=x
AB
+y
AC
,則xy的取值范圍是( 。
A、(0,
1
4
]
B、[
1
16
,
1
4
]
C、[
1
16
,
3
16
]
D、[
3
16
,
1
4
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由于霧霾日趨嚴(yán)重,政府號(hào)召市民乘公交出行.但公交車的數(shù)量太多會(huì)造成資源的浪費(fèi),太少又難以滿足乘客需求.為此,某市公交公司在某站臺(tái)的60名候車乘客中進(jìn)行隨機(jī)抽樣,共抽取10人進(jìn)行調(diào)查反饋,所選乘客情況如下表所示:
組別 候車時(shí)間(單位:min) 人數(shù)
[0,5) 1
[5,10) 5
[10,15) 3
[15,20) 1
(1)估計(jì)這60名乘客中候車時(shí)間少于10分鐘的人數(shù);
(2)現(xiàn)從這10人中隨機(jī)取3人,求至少有一人來自第二組的概率;
(3)現(xiàn)從這10人中隨機(jī)抽取3人進(jìn)行問卷調(diào)查,設(shè)這3個(gè)人共來自X個(gè)組,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線y=mx與函數(shù)f(x)=
2-(
1
3
)
x
 
,x≤0
1
2
x
2
 
+1,x>0.
的圖象恰好有3個(gè)不同的公共點(diǎn),則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y∈R,則(3-4y-cosx)2+(4+3y+sinx)2的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=[x[x]],其中[x]表示不超過實(shí)數(shù)x的最大整數(shù),如[-2.01]=-3,[1.999]=1.若-
3
2
≤x
3
2
,則f(x)的值域?yàn)?div id="vlr755z" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知圓O:x2+y2=16,點(diǎn)P(1,2),M,N為圓O上不同的兩點(diǎn),且滿足
PM
PN
=0
.若
PQ
=
PM
+
PN
,則|
PQ
|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U=R,集合A={x|2x>1},B={x|-1≤x≤5},則(∁UA)∩B等于( 。
A、[-1,0)
B、(0,5]
C、[-1,0]
D、[0,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=alnx-ax-3(a∈R).
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若函數(shù)f(x)的圖象在點(diǎn)(2,f(2))處的切線的傾斜角為45°,且函數(shù)g(x)=x3+x2[f′(x)+
m
2
]在區(qū)間(1,3)上不單調(diào),求m的取值范圍;
(Ⅲ)試比較
ln22
22
+
ln32
32
+…+
lnn2
n2
(n-1)(2n+1)
2(n+1)
的大。╪∈N+,且n≥2),并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案