19.一機器可以按不同的速度運轉(zhuǎn),其生產(chǎn)物件有一些會有缺點,每小時生產(chǎn)有缺點物件的多少,隨機器運轉(zhuǎn)速度而變化,用x表示轉(zhuǎn)速(單位:轉(zhuǎn)/秒),用y表示每小時生產(chǎn)的有缺點物件的個數(shù),現(xiàn)觀測得到(x,y)的四組觀測值為(8,5),(12,8),(14,9),(16,11).已知y與x有很強的線性相關性,若實際生產(chǎn)中所允許的每小時有缺點的物件數(shù)不超過10,則機器的速度每秒不得超過多少轉(zhuǎn)?(精確到整數(shù))
參考公式:
若(x1,y1),…,(xn,yn)為樣本點,$\widehat{y}$=$\widehat$x+$\widehat{a}$
$\overline{x}$=$\frac{1}{n}$$\sum_{i=1}^{n}$xi,$\overline{y}$=$\frac{1}{n}$$\sum_{i=1}^{n}$yi,$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$x.

分析 先求出橫標和縱標的平均數(shù),得到這組數(shù)據(jù)的樣本中心點,利用最小二乘法求出線性回歸方程的系數(shù),代入樣本中心點求出a的值,寫出線性回歸方程;由實際生產(chǎn)中所容許的每小時最大有缺陷物件數(shù)為l0,建立不等式進行求解即可.

解答 解:由于$\overline{x}$=$\frac{1}{n}$$\sum_{i=1}^{n}$xi=12.5,$\overline{y}$=$\frac{1}{n}$$\sum_{i=1}^{n}$yi=8.25,∴$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{25.5}{35}$=0.729,$\widehat{a}$=$\overline{y}$-$\widehat$x=-0.857,
那么$\widehat{y}$=$\widehat$x+$\widehat{a}$=0.729x-0.857,
由0.729x-0.857≤10,得x≤14.893≈15
即每小時有缺點的物件數(shù)不超過10時,機器的速度每秒不得超過15轉(zhuǎn).

點評 本題考查線性回歸方程的求法和應用,本題解題的關鍵是利用最小二乘法求出線性回歸方程的系數(shù),考查學生的運算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

7.甲乙二人玩游戲,甲想一數(shù)字記為a,乙猜甲剛才想的數(shù)字,把乙猜出的數(shù)字記為b,且a,b∈{1,2,3},若|a-b|≤1,則稱甲乙心有靈犀,則他們心有靈犀的概率為$\frac{7}{9}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.某高校在2015年的自主招生考試成績中隨機抽取100名學生的筆試成績,按成績分組:第1組[160,165),第2組[165,170),第3組[170,175),第4組[175,180),第5組[180,185)得到的頻率分布直方圖如圖所示.

(1)分別求出第3、4、5組的頻率;
(2)為了能選拔出最優(yōu)秀的學生,該校決定在筆試成績高的第3、4、5組中用分層抽樣抽取6名學生進入第二輪面試,求第3、4、5組每組各抽取多少名學生進入第二輪面試?
(3)計算這100名學生筆試成績的平均值,中位數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.若將一個質(zhì)點隨機投入如圖所示的長方形ABCD中,其中AB=2,BC=1,則質(zhì)點落在以AB為直徑的半圓內(nèi)的概率是( 。
A.$\frac{π}{8}$B.$\frac{π}{4}$C.$\frac{π}{5}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.正三角形ABC的邊長為1,點P、Q由點C出發(fā),分別沿線段CA、CB前進,CP與時間t(0<t≤1)的關系是|CP|=t2,CQ與時間t的關系是$|CQ|=\sqrt{t}$,記y為三角形CPQ的面積,則y的大致圖象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.如圖,在圓心角為直角的扇形OAB中,分別以OA,OB為直徑作兩個半圓,設OA=1,則陰影部分的面積是$\frac{π-2}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.若點(1,2)和點(-1,3)在直線x+ay-1=0的兩側,則實數(shù)a的取值范圍是$(0,\frac{2}{3})$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知△AB的三個頂點在拋物線Γ:x2=y上運動,
(1)求Γ的準線方程;
(2)若點A在坐標原點,B,C是拋物線上的動點,且滿足$\overrightarrow{AC}•\overrightarrow{AB}=0$,點M是線段BC的中點,求點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知集合A={x|x-1|≤2},集合$B=\left\{{x\left|{\frac{x-a}{x+3}<0}\right.}\right\}$
(1)若a=1,求集合A∩B;
(2)若A∪B=B,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案