已知橢圓的左、右焦點分別為,且,長軸的一個端點與短軸兩個端點組成等邊三角形的三個頂點.
(1)求橢圓方程;
(2)設(shè)橢圓與直線相交于不同的兩點M、N,又點,當(dāng)時,求實數(shù)m的取值范圍,
(1).
(2)時,的取值范圍是時,的取值范圍是

試題分析:(1)由已知,可得,,
利用,即得,,求得橢圓方程.
(2)應(yīng)注意討論的兩種情況.
首先當(dāng)時,直線和橢圓有兩交點只需;
當(dāng)時,設(shè)弦的中點為分別為點的橫坐標(biāo),
聯(lián)立,得,
注意根據(jù),確定   ① 平時解題時,易忽視這一點.
應(yīng)用韋達(dá)定理及中點坐標(biāo)公式以及 得到 ②,
將②代入①得,解得, 由②得 ,
故所求的取值范圍是.
試題解析:(1)由已知,可得,,
,∴,
.                            4分
(2)當(dāng)時,直線和橢圓有兩交點只需;             5分
當(dāng)時,設(shè)弦的中點為分別為點的橫坐標(biāo),由,得
由于直線與橢圓有兩個不同的交點,所以
,即   ①                                7分
   9分
 ②, 10分
將②代入①得,解得, 由②得 ,
故所求的取值范圍是.                     12分
綜上知,時,的取值范圍是
時,的取值范圍是               13分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知動直線與橢圓交于、兩不同點,且△的面積=,其中為坐標(biāo)原點.
(1)證明均為定值;
(2)設(shè)線段的中點為,求的最大值;
(3)橢圓上是否存在點,使得?若存在,判斷△的形狀;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的左、右焦點分別為、,橢圓上的點滿足,且的面積
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在直線,使與橢圓交于不同的兩點、,且線段恰被直線平分?若存在,求出的斜率取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知是拋物線上的兩個點,點的坐標(biāo)為,直線的斜率為k, 為坐標(biāo)原點.
(Ⅰ)若拋物線的焦點在直線的下方,求k的取值范圍;
(Ⅱ)設(shè)C為W上一點,且,過兩點分別作W的切線,記兩切線的交點為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的左、右焦點分別為、,為原點.
(1)如圖1,點為橢圓上的一點,的中點,且,求點軸的距離;

(2)如圖2,直線與橢圓相交于兩點,若在橢圓上存在點,使四邊形為平行四邊形,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓過定點,圓心在拋物線上,、為圓軸的交點.
(1)當(dāng)圓心是拋物線的頂點時,求拋物線準(zhǔn)線被該圓截得的弦長.
(2)當(dāng)圓心在拋物線上運動時,是否為一定值?請證明你的結(jié)論.
(3)當(dāng)圓心在拋物線上運動時,記,求的最大值,并求出此時圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(13分)如圖,某隧道設(shè)計為雙向四車道,車道總寬20m,要求通行車輛限高5m,隧道全長2.5km,隧道的兩側(cè)是與地面垂直的墻,高度為3米,隧道上部拱線近似地看成半個橢圓。

(1)若最大拱高h(yuǎn)為6 m,則隧道設(shè)計的拱寬是多少?
(2)若要使隧道上方半橢圓部分的土方工程 量最小,則應(yīng)如何設(shè)計拱高h(yuǎn)和拱寬?(已知:橢圓+=1的面積公式為S=,柱體體積為底面積乘以高。)
(3)為了使隧道內(nèi)部美觀,要求在拱線上找兩個點M、N,使它們所在位置的高度恰好是限高5m,現(xiàn)以M、N以及橢圓的左、右頂點為支點,用合金鋼板把隧道拱線部分連接封閉,形成一個梯形,若l=30m,梯形兩腰所在側(cè)面單位面積的鋼板造價是梯形頂部單位面積鋼板造價的倍,試確定M、N的位置以及的值,使總造價最少。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(1)已知定點、,動點N滿足(O為坐標(biāo)原點),,,,求點P的軌跡方程.

(2)如圖,已知橢圓的上、下頂點分別為,點在橢圓上,且異于點,直線與直線分別交于點,

(。┰O(shè)直線的斜率分別為、,求證:為定值;
(ⅱ)當(dāng)點運動時,以為直徑的圓是否經(jīng)過定點?請證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線的左焦點為F1,左、右頂點分別為A1、A2,P為雙曲線上任意一點,則分別以線段PF1,A1A2為直徑的兩個圓的位置關(guān)系為(   )
A.相交B.相切C.相離D.以上情況都有可能

查看答案和解析>>

同步練習(xí)冊答案